考点:一次函数与二元一次方程(组)
专题:计算题
分析:把方程组的解理解为直线y=kx+m与直线y=(2k-1)x+4的交点个数,然后分类讨论:当k=2k-1,m=4时,直线y=kx+m与直线y=(2k-1)x+4重合;当k≠2k-1,m=4时,直线y=kx+m与直线y=(2k-1)x+4有一个交点,两种情况都得到m=4.
解答:解:当k=2k-1,m=4时,直线y=kx+m与直线y=(2k-1)x+4重合,即方程组有无数组解,所以k=1,m=4;
当k≠2k-1,m=4时,直线y=kx+m与直线y=(2k-1)x+4有一个交点,即方程组有一组解,所以k≠1,m=4.
所以m=4时,方程组
至少有一个解.
故答案为4.
点评:本题考查了一次函数与二元一次方程(组):满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.