2£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Ö±Ïßy1=x+mÓëË«ÇúÏßy2=$\frac{k}{x}$½»ÓÚµãA¡¢B£¬ÒÑÖªµãA¡¢BµÄºá×ø±êΪ2ºÍ-1£®
£¨1£©ÇókµÄÖµ¼°Ö±ÏßÓëxÖáµÄ½»µã×ø±ê£»
£¨2£©Ö±Ïßy=2x½»Ë«ÇúÏßy=$\frac{k}{x}$ÓÚµãC¡¢D£¨µãCÔÚµÚÒ»ÏóÏÞ£©ÇóµãC¡¢DµÄ×ø±ê£»
£¨3£©ÉèÖ±Ïßy=ax+bÓëË«ÇúÏßy=$\frac{k}{x}$£¨ak¡Ù0£©µÄÁ½¸ö½»µãµÄºá×ø±êΪx1¡¢x2£¬Ö±ÏßÓë  xÖá½»µãµÄºá×ø±êΪx0£¬½áºÏ£¨1£©¡¢£¨2£©ÖеĽá¹û£¬²ÂÏëx1¡¢x2¡¢x0Ö®¼äµÄµÈÁ¿¹ØÏµ²¢Ö¤Ã÷ÄãµÄ²ÂÏ룮

·ÖÎö £¨1£©¸ù¾Ý´ý¶¨ÏµÊý·¨¼´¿É½â¾ö£®
£¨2£©½â·½³Ì×é$\left\{\begin{array}{l}{y=2x}\\{y=\frac{2}{x}}\end{array}\right.$¼´¿É½âµÃC¡¢D×ø±ê£®
£¨3£©½áÂÛ£ºx1+x2=x0£¬ÓÉ$\left\{\begin{array}{l}{y=ax+b}\\{y=\frac{k}{a}}\end{array}\right.$ÏûÈ¥yµÃ£ºax2+bx-k=0£¬ËùÒÔx1+x2=-$\frac{b}{a}$£¬ÓÖÖ±Ïßy=ax+bÓëxÖáµÄ½»µãΪ£¨-$\frac{b}{a}$£¬0£©£¬ËùÒÔx0=-$\frac{b}{a}$£¬ËùÒÔx1+x2=x0£®

½â´ð ½â£º£¨1£©ÓÉÌâÒ⣺$\left\{\begin{array}{l}{2+m=\frac{k}{2}}\\{-1+m=-k}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{m=-1}\\{k=2}\end{array}\right.$£¬
¡ày1=x-1£¬y2=$\frac{2}{x}$£¬
¡àk=2£¬Ö±Ïßy1=x-1ÓëxÖáµÄ½»µãΪ£¨1£¬0£©£®
£¨2£©ÓÉ$\left\{\begin{array}{l}{y=2x}\\{y=\frac{2}{x}}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.»ò\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$£¬
ËùÒÔµãC£¨1£¬2£©£¬D£¨-1£¬-2£©£®
£¨3£©½áÂÛ£ºx1+x2=x0£¬
ÀíÓÉ£ºÓÉ$\left\{\begin{array}{l}{y=ax+b}\\{y=\frac{k}{a}}\end{array}\right.$ÏûÈ¥yµÃ£ºax2+bx-k=0£¬
¡ßÖ±Ïßy=ax+bÓëË«ÇúÏßy=$\frac{k}{x}$£¨ak¡Ù0£©µÄÁ½¸ö½»µãµÄºá×ø±êΪx1¡¢x2£¬
¡àx1+x2=-$\frac{b}{a}$£¬
Ö±Ïßy=ax+bÓëxÖáµÄ½»µãΪ£¨-$\frac{b}{a}$£¬0£©£¬
¡àx0=-$\frac{b}{a}$£¬
¡àx1+x2=x0£®

µãÆÀ ±¾Ì⿼²é·´±ÈÀýº¯ÊýºÍÒ»´Îº¯ÊýµÄÓйØÖªÊ¶£¬½âÌâµÄ¹Ø¼üÊÇÀí½â·½³Ì×é½âÓë½»µã×ø±êµÄ¹ØÏµ£¬ÌåÏÖÊýÐνáºÏµÄ˼Ï룬ÊôÓÚÖп¼³£¿¼ÌâÐÍ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Ä³É̳¡ÏúÊÛÒ»Åú³ÄÉÀ£¬Æ½¾ùÿÌì¿ÉÊÛ³ö20¼þ£¬Ã¿¼þÓ®Àû40Ôª£¬ÎªÁËÀ©´óÏúÊÛ£¬Ôö¼ÓÓ®Àû£¬¾¡¿ì¼õÉÙ¿â´æ£¬É̳¡¾ö¶¨²ÉÈ¡Êʵ±µÄ½µ¼Û´ëÊ©£®¾­¹ýÊг¡µ÷²é·¢ÏÖ£¬Èç¹ûÿ¼þ³ÄÉÀÿ½µ1Ôª£¬É̳¡Æ½¾ùÿÌì¿É¶àÊÛ³ö2¼þ£®Éèÿ¼þ³ÄÉÀ½µ¼ÛxÔª£¬Ã¿ÌìµÄÀûÈóΪyÔª£¬
£¨1£©ÊÔд³öyÓëxÖ®¼äµÄº¯Êý¹ØÏµÊ½£»
£¨2£©ÈôÉ̳¡Æ½¾ùÿÌìÓ®Àû1200Ôª£¬Ã¿¼þ³ÄÉÀÓ¦½µ¼Û¶àÉÙÔª£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Ò»´Îº¯Êý$y=\frac{x}{2}-1$ÔÚyÖáÉϵĽؾàΪ-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÏÈ»¯¼ò$\frac{{{x^2}-1}}{{{x^2}-x-2}}¡Â£¨\frac{3}{2-x}-x-2£©$£¬ÔÙ´Ó-2£¬-1£¬0£¬1ËĸöÊýÖÐѡȡһ¸öÊʵ±µÄÊý×÷ΪxµÄÖµ´úÈëÇóÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Ò»×éÊý-1¡¢x¡¢2¡¢2¡¢3¡¢3µÄÖÚÊýΪ3£¬Õâ×éÊýµÄ·½²îΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬¾ØÐÎOABCµÄÁ½±ßOC¡¢OA·Ö±ðÔÚxÖá¡¢yÖáµÄÕý°ëÖáÉÏ£¬·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨x£¾0£©ÓëABÏཻÓÚµãD£¬ÓëBCÏཻÓÚµãE£¬ÈôBE=4EC£¬ÇÒ¡÷ODEµÄÃæ»ýÊÇ5£¬ÔòkµÄֵΪ$\frac{25}{12}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬Æ½ÐйâÏßABÓëDEÉäÏòÍ¬Ò»Æ½Ãæ¾µºó±»·´É䣬´Ëʱ¡Ï1=¡Ï2£¬¡Ï3=¡Ï4£¬ÄÇô·´Éä¹âÏßBCÓëEFƽÐÐÂð£¿ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®±È½Ï´óС£º
$\sqrt{9}$£¼ ¦Ð£»  
6£¾$\sqrt{30}$£¬
$-\sqrt{0.81}$£¾-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÅжϴúÊýʽ£¨$\frac{2{a}^{2}+2a}{{a}^{2}-1}-\frac{{a}^{2}-a}{{a}^{2}-2a+1}$£©$¡Â\frac{a}{a+1}$µÄÖµÄÜ·ñµÈÓÚ-1£¿²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸