【题目】蛋黄酥是现下糕点界的网红,每一颗蛋黄酥金黄诱人的酥皮下都包着一颗细腻绵沙的咸蛋黄,其口口酥心,层层松软的特点让人难忘.某商家推出两款八粒装的蛋黄酥,其中麻薯豆沙蛋黄酥50元每盒,莲蓉千层蛋黄酥48元每盒,两款蛋黄酥非常畅销,平均每周销售额为344000元.
(1)受生产能力限制,该商家平时每周生产7000盒八粒装蛋黄酥,为了保证周销售额不变,则每周平均需生产麻薯豆沙蛋黄酥多少盒?
(2)在(1)的条件下,为了迎接双十一大促,该商家提前扩大生产能力,并在双十一当天,开展蛋黄酥促销活动,麻薯豆沙蛋黄酥售价降低了a元,其销量在当天比平时周销量增加了2000盒,最后当天两款蛋黄酥的总销售额比平时周销售额还多96000元,求a的值.
【答案】(1)每周平均需生产麻薯豆沙蛋黄酥4000盒;(2)a的值为.
【解析】
(1)设每周平均需生产麻薯豆沙蛋黄酥x盒,则每周平均需生产莲蓉千层蛋黄酥(7000﹣x)盒,根据总价=单价×数量,即可得出关于x的一元一次方程,解之即可得出结论;
(2)根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.
解:(1)设每周平均需生产麻薯豆沙蛋黄酥x盒,则每周平均需生产莲蓉千层蛋黄酥(7000﹣x)盒,
依题意,得:50x+48(7000﹣x)=344000,
解得:x=4000.
答:每周平均需生产麻薯豆沙蛋黄酥4000盒.
(2)依题意,得:(50﹣a)×(4000+2000)+48×(7000﹣4000)=344000+96000,
解得:a=.
答:a的值为.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C,G是⊙O上两点,且,过点C的直线CD⊥BG于点D,交BA的延长线于点E,连接BC,交OD于点F.
(1)求证:CD是⊙O的切线;
(2)若,求证:AE=AO;
(3)连接 AD,在(2)的条件下,若CD ,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,一次函数y=﹣x+b的图象与反比例函数y=(k≠0)的图象交于A、B点,与y轴交于点C,其中点A的半标为(﹣2,3)
(1)求一次函数和反比例函数的解析式;
(2)如图,若将点C沿y轴向上平移4个单位长度至点F,连接AF、BF,求△ABF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水产品养殖企业为指导该企业某种产品的养殖和销售,对历年市场行情和水产品的养殖情况进行了调查.调查发现这种水产品的每千克售价(元)与销售月份(月)满足关系式+36,而其每千克成本(元)与销售月份(月)满足的函数关系如图所示:
(1)试确定、的值;
(2)求出这种水产品每千克的利润(元)与销售月份(月)之间的函数关系式;
(3)几月份出售这种水产品每千克利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“双11”当天,重庆顺风快递公司出动所有车辆分上午、下午两批往成都送件,该公司共有甲、乙、丙三种车型,其中甲型车数量占公司车辆总数的,乙型车辆是丙型车数量的2倍,上午安排甲车数量的,乙车数量的,丙车数量的进行运输,且上午甲、乙、丙三种车型每辆载货量分别为15吨,10吨,20吨,则上午刚好运完当天全部快件重量的;下午安排剩下的所有车辆运输完当天剩下的所有快件,且下午甲、乙、丙三种车型每辆载货量分别不得超过20吨,12吨,16吨,下午乙型车实际载货量为下午甲型车每辆实际载货量的.已知同种货车每辆的实际载货量相等,甲、乙、丙三种车型每辆车下午的运输成本分别为50元/吨,90元/吨,60元/吨.则下午运输时,一辆甲种车、一辆乙种车、一辆丙种车总的运输成本最少为_____元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系中,抛物线y=ax2﹣2ax+4(a<0)交x轴于点A、B,与y轴交于点C,AB=6.
(1)如图1,求抛物线的解析式;
(2)如图2,点R为第一象限的抛物线上一点,分别连接RB、RC,设△RBC的面积为s,点R的横坐标为t,求s与t的函数关系式;
(3)在(2)的条件下,如图3,点D在x轴的负半轴上,点F在y轴的正半轴上,点E为OB上一点,点P为第一象限内一点,连接PD、EF,PD交OC于点G,DG=EF,PD⊥EF,连接PE,∠PEF=2∠PDE,连接PB、PC,过点R作RT⊥OB于点T,交PC于点S,若点P在BT的垂直平分线上,OB﹣TS=,求点R的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】张老师在讲解复习《圆》的内容时,用投影仪屏幕展示出如下内容:
如图,内接于,直径的长为2,过点的切线交的延长线于点.
张老师让同学们添加条件后,编制一道题目,并按要求完成下列填空.
(1)在屏幕内容中添加条件,则的长为______.
(2)以下是小明、小聪的对话:
小明:我加的条件是,就可以求出的长
小聪:你这样太简单了,我加的是,连结,就可以证明与全等.
参考上面对话,在屏幕内容中添加条件,编制一道题目(此题目不解答,可以添线、添字母).______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,平行四边形在平面直角坐标系中,(点在点的左侧)两点的横坐标是方程的两个根,点在轴上,其中.
若是第一象限位于直线上方的一点,过作于过作轴于点,作轴交直线于为中点,其中的周长是;若为线段上一动点,为直线上一动点,连接,求的最小值,此时轴上有一个动点,当最大时,求点坐标;
在的情况下,将绕点逆时针旋转后得到如图2,将线段沿着轴平移记平移过程中的线段为,在平面直角坐标系中是否存在点,使得以点为顶点的四边形为菱形,若存在,请求出点的坐标,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com