【题目】已知关于的方程.
(1)求证:不论为任何实数,此方程总有实数根;
(2)若抛物线与轴交于两个不同的整数点,且为正整数,试确定此抛物线的解析式.
【答案】(1)证明见解析;(2)y=x2+4x+3.
【解析】
(1)分别讨论当m=0和m≠0的两种情况,分别对一元一次方程和一元二次方程的根进行判断;
(2)令y=0,则 mx2+(3m+1)x+3=0,求出两根,再根据抛物线y=mx2+(3m+1)x+3与x轴交于两个不同的整数点,且m为正整数,求出m的值.
解:(1)当m=0时,原方程化为x+3=0,此时方程有实数根x=-3.
当m≠0时,原方程为一元二次方程.
∵△=(3m+1)2-12m=9m2-6m+1=(3m-1)2≥0.
∴此时方程有两个实数根.
综上,不论m为任何实数时,方程mx2+(3m+1)x+3=0总有实数根.
(2)∵令y=0,则mx2+(3m+1)x+3=0
解得x1=-3,x2=-.
∵抛物线y=mx2+(3m+1)x+3与x轴交于两个不同的整数点,且m为正整数,
∴m=1.
∴抛物线的解析式为y=x2+4x+3.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是( )
A.20°B.35°C.40°D.55°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是 ( )
A.要调查现在人们在数学化时代的生活方式,宜采用普查方式
B.一组数据3,4,4,6,8,5的中位数是4
C.必然事件的概率是100%,随机事件的概率大于0而小于1
D.若甲组数据的方差=0.128,乙组数据的方差=0.036,则甲组数据更稳定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)线段AC,AG,AH什么关系?请说明理由;
(3)设AE=m,
①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.
②请直接写出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=(k是常数).
(1)若该函数的图象与x轴有两个不同的交点,试求k的取值范围;
(2)若点(1,k)在某反比例函数图象上,要使该反比例函数和二次函数y=都是y随x的增大而增大,求k应满足的条件及x的取值范围;
(3)若抛物线y=与x轴交于A(,0)、B(,0)两点,且<,=34,若与y轴不平行的直线y=ax+b经过点P(1,3),且与抛物线交于(,)、(,)两点,试探究是否为定值,并写出探究过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论,其中不正确的是( )
A. 当m=﹣3时,函数图象的顶点坐标是(,)
B. 当m>0时,函数图象截x轴所得的线段长度大于
C. 当m≠0时,函数图象经过同一个点
D. 当m<0时,函数在x>时,y随x的增大而减小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+3x+c经过A(﹣1,0),B(4,0)两点,与y轴交于点C.
(1)求抛物线的解析式;
(2)若点P在第一象限的抛物线上,且点P的横坐标为t,过点P向x轴作垂线交直线BC于点Q,设线段PQ的长为m,求m与t之间的函数关系式,并求出m的最大值;
(3)在(2)的条件下,抛物线上点D(不与C重合)的纵坐标为m的最大值,在x轴上找一点E,使点B、C、D、E为顶点的四边形是平行四边形,请直接写出E点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在菱形ABCD中,∠BAD=120°,AB=4cm.动点E在射线BC上匀速运动,其运动速度为1cm/s,运动时间为ts.连接AE,并将线段AE绕点A顺时针旋转120°至AF,连接BF.
(1)试说明无论t为何值,△ABF的面积始终为定值,并求出该定值;
(2)如图2,连接EF,BD,交于点H,BD与AE交于点G,当t为何值时,△HEG为直角三角形?
(3)如图3、当F、B、D三点共线时,求tan∠FEB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校举办学生“四大名著讲解大赛”,比赛项目为:A.《三国演义》;B. 《水浒传》;C.《西游记》;D.《红楼梦》.比赛形式分“单人组”和“双人组”.
(1)学生甲参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中《红楼梦》的概率是多少?
(2)学生乙和学生丙组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则学生乙和学生丙都没有抽到《西游记》的概率是多少?请用画树状图或列表的方法进行说明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com