【题目】如图,抛物线y=ax2+bx+2(a<0)与x轴交于点A(﹣1,0)和点B(2,0),与y轴交于点C.
(1)求该抛物线的函数解析式;
(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD、CD,OD交BC于点F,当S△COF:S△CDF=2:1时,求点D的坐标;
(3)如图2,点E的坐标为(0,﹣1),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.
【答案】(1)y=﹣x2+x+2;(2)D(1,2);(3)()或(﹣).
【解析】
(1)利用待定系数法求解析式即可得到答案,
(2)过点D作DH∥y轴交BC于点H,交x轴于点G,利用S△COF:S△CDF=2:1得到OF:DF=2:1,利用相似三角形的性质可得答案,
(3)分情况讨论:①当点P在x轴上方时,在y轴上取点G(1,0),连接BG,则∠OBG=∠OBE,过点B作直线PB交抛物线于点P,交y轴于点M,使∠GBM=∠GBO,则∠OBP=2∠OBE,然后求解的解析式,建立方程组求解即可,
②当点P在x轴下方时,作点M(0,)关于x轴的对称点N(0,),求解的解析式,建立方程组求解即可.
解:(1)∵A(﹣1,0),B(2,0),
∴把A(﹣1,0),B(2,0)代入y=ax2+bx+2得,
解得,
∴该抛物线的函数解析式为y=﹣x2+x+2;
(2)如图1,过点D作DH∥y轴交BC于点H,交x轴于点G,
∵抛物线y=﹣x2+x+2与y轴交于点C,
∴C(0,2),
设直线BC解析式为y=kx+b,
则解得
∴直线BC解析式为y=﹣x+2,
∵S△COF:S△CDF=2:1,
∴OF:DF=2:1,
∵DH∥OC,
∴△OFC∽△DFH,
∴
∴OC=2DH,
设D(a,﹣a2+a+2),则H(a,﹣a+2),
∴DH=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a,
∴2=2(﹣a2+2a),
解得a=1,
∴D(1,2).
(3)①当点P在x轴上方时,
在y轴上取点G(1,0),连接BG,则∠OBG=∠OBE,过点B作直线PB交抛物线于点P,交y轴于点M,使∠GBM=∠GBO,
则∠OBP=2∠OBE,
过点G作GH⊥BM,
∵E(0,﹣1),
∴OE=OG=GH=1,
设MH=x,则MG=,
在Rt△OBM中,OB2+OM2=MB2,
∴(+1)2+4=(x+2)2,
解得:x=,(舍去)
故MG==
∴OM=OG+MG=
∴点M(0,),
将点B(2,0)、M(0,)的坐标代入一次函数表达式y=mx+n,
解得: ,
∴直线BM的表达式为:
∴
解得:或x=2(舍去),
∴点P;
②当点P在x轴下方时,
作点M(0,)关于x轴的对称点N(0,),
同理可得:
直线BN的解析式为
∴
解得,或x=2(舍去),
∴点P;
综合以上可得,点P的坐标为或.
科目:初中数学 来源: 题型:
【题目】如图,是半圆的直径,点是半圆上的一个动点,的角平分线交圆弧于点,过点作于点.
(1)求证:是半圆的切线;
(2)填空:①若,则__________;
②连接、,当的度数为__________时,四边形是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=ax2+bx+与x轴分别交于点A(﹣1,0),B(3,0),点C是顶点.
(1)求抛物线的解析式;
(2)如图1,线段DE是射线AC上的一条动线段(点D在点E的下方),且DE=2,点D从点A出发沿着射线AC的方向以每秒2个单位长度的速度运动,以DE为一边在AC上方作等腰Rt△DEF,其中∠EDF=90°,设运动时间为t秒.
①点D的坐标是 (用含t的代数式表示);
②当直线BC与△DEF有交点时,请求出t的取值范围;
(3)如图2,点P是△ABC内一动点,BP=,点M,N分别是AB,BC边上的两个动点,当△PMN的周长最小时,请直接写出四边形PNBM面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB∥CD,AD与BC相交于点E,AF平分∠BAD,交BC于点F,交CD的延长线于点G.
(1)若∠G=29°,求∠ADC的度数;
(2)若点F是BC的中点,求证:AB=AD+CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为直线x=﹣1,与x轴的交点为(x1,0)、(x2,0),其中0<x2<1,有下列结论:①b2﹣4ac>0;②4a﹣2b+c>﹣1;③﹣3<x1<﹣2;④当m为任意实数时,a﹣b≤am2+bm;⑤3a+c=0.其中,正确的结论有( )
A.②③④B.①③⑤C.②④⑤D.①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2015年市政府共投资3亿元人民币建设了廉租房12万平方米,2017年计划投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.
(1)求每年市政府投资的增长率;
(2)若这两年内的建设成本不变,问从2015到2017年这三年共建设了多少万平方米廉租房?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有4张相同的卡片分别写着数字﹣1、2、﹣3、4,将卡片的背面朝上,并洗匀.从中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的b.则这个一次函数的图象恰好经过第一、二、四象限的概率是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(抗击疫情)为了遏制新型冠状病毒疫情的蔓延势头,各地教育部门在推迟各级学校开学时间的同时提出“听课不停学”的要求,各地学校也都开展了远程网络教学,某校集中为学生提供四类在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了了解学生的需求,该校通过网络对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据结果绘制成如下两幅不完整的统计图。
(1)本次调查的人数有多少人?
(2)请补全条形图;
(3)请求出“在线答疑”在扇形图中的圆心角度数;
(4)小宁和小娟都参加了远程网络教学活动,请求出小宁和小娟选择同一种学习方式的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2011山东济南,27,9分)如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线经过A、C两点,与AB边交于点D.
(1)求抛物线的函数表达式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式,并求出m为何值时,S取得最大值;
②当S最大时,在抛物线的对称轴l上若存在点F,使△FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com