【题目】某游乐园要建一个圆形喷水池,在喷水池的中心安装一个大的喷水头,高度为m,喷出的水柱沿抛物线轨迹运动(如图),在离中心水平距离4m处达到最高,高度为6m,之后落在水池边缘,那么这个喷水池的直径AB为____m.
科目:初中数学 来源: 题型:
【题目】某数学兴趣小组在探究函数y=x2﹣2|x|+3的图象和性质时,经历了以下探究过程:
(1)列表(完成下列表格).
x | … | ﹣3 | ﹣2 | ﹣1 | ﹣ | 0 | 1 | 2 | 3 | … | |
y | … | 6 | 3 | 2 |
|
|
| 2 | 3 | 6 | … |
(2)描点并在图中画出函数的大致图象;
(3)根据函数图象,完成以下问题:
①观察函数y=x2﹣2|x|+3的图象,以下说法正确的有 (填写正确的序号)
A.对称轴是直线x=1;
B.函数y=x2﹣2|x|+3的图象有两个最低点,其坐标分别是(﹣1,2)、(1,2);
C.当﹣1<x<1时,y随x的增大而增大;
D.当函数y=x2﹣2|x|+3的图象向下平移3个单位时,图象与x轴有三个公共点;
E.函数y=(x﹣2)2﹣2|x﹣2|+3的图象,可以看作是函数y=x2﹣2|x|+3的图象向右平移2个单位得到.
②结合图象探究发现,当m满足 时,方程x2﹣2|x|+3=m有四个解.
③设函数y=x2﹣2|x|+3的图象与其对称轴相交于P点,当直线y=n和函数y=x2﹣2|x|+3图象只有两个交点时,且这两个交点与点P所构成的三角形是等腰直角三角形,求n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,三张“黑桃”扑克牌,背面完全相同将三张扑克牌背面朝上,洗匀后放在桌面上甲,乙两人进行摸牌游戏,甲先从中随机抽取一张,记下数字再放回洗匀,乙再从中随机抽取一张.
(1)甲抽到“黑桃”,这一事件是 事件(填“不可能“,“随机“,“必然”);
(2)利用树状图或列表的方法,求甲乙两人抽到同一张扑克牌的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线的开口向上顶点为P
(1)若P点坐标为(4,一1),求抛物线的解析式;
(2)若此抛物线经过(4,一1),当-1≤x≤2时,求y的取值范围(用含a的代数式表示)
(3)若a=1,且当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,求b的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙、丙、丁4人聚会,吗,每人带了一件礼物,4件礼物从外盒包装看完全相同,将4件礼物放在一起.
(1)甲从中随机抽取一件,则甲抽到不是自己带来的礼物的概率是 ;
(2)甲先从中随机抽取一件,不放回,乙再从中随机抽取一件,求甲、乙2人抽到的都不是自己带来的礼物的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AC=5,AB=7,BC=4,点D在边AB上,且AD=3,动点P从点A出发,以每秒1个单位长度的速度向终点B运动,以PD为边向上作正方形PDMN,设点P运动的时间为t,正方形PDMN与△ABC重叠部分的面积为S.
(1)用含有t的代数式表示线段PD的长
(2)当点N落在△ABC的边上时,求t的值
(3)求S与t的函数关系式
(4)当点P在线段AD上运动时,作点N关于CD的对称点N′,当N′与△ABC的某一个顶点所连的直线平分△ABC的面积时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为丰富学生的课余生活,某校记划开展三种拓展课活动,分别是“文学赏析”,“趣味数学”,“科学实验”等项目,要求每位学生自主选择其中一项拓展课参加.随机抽取该校各年段部分学生,对选择拓展课的意向进行调査,将调查的结果制作成以下统计图和不完整的统计表.
某校被调查学生选择拓展课意向统计表
选择意向 | 所占百分比 |
文学赏析 |
|
趣味数学 | 35% |
科学实验 |
|
其它 | 30% |
(1)该校有2000名学生,请你估计大约有多少名学生参加科学实验拓展课,并补全统计表.
(2)该校参加科学实验拓展课的学生随机分成A,B,C三个人数相同的班级.小慧和小明都参加科学实验拓展课,求他们同班级的概率(画树状图或列表法求解)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABD中,AB=AD,以AB为直径的⊙F交BD于点C,交AD于E,CG是⊙F的切线,CG交AD于点G.
(1)求证:CG⊥AD;
(2)填空:
①若△BDA的面积为80,则△BCF的面积为 ;
②当∠BAD的度数为 时,四边形EFCD是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,-3),点P是直线BC下方抛物线上的一个动点.
(1)求二次函数解析式;
(2)连接PO,PC,并将△POC沿y轴对折,得到四边形.是否存在点P,使四边形为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;
(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com