精英家教网 > 初中数学 > 题目详情

【题目】抛物线A(2,3),B(4,3),C(6,﹣5)三点.

(1)求抛物线的表达式;

(2)如图,抛物线上一点D在线段AC的上方,DEABAC于点E,若满足,求点D的坐标;

(3)如图②,F为抛物线顶点,过A作直线lAB,若点P在直线l上运动,点Qx轴上运动,是否存在这样的点PQ,使得以BPQ为顶点的三角形与ABF相似,若存在,求PQ的坐标,并求此时BPQ的面积;若不存在,请说明理由.

【答案】1;(2D);(3P2,﹣2),Q(﹣30),SBPQ=P22),Q30),SBPQ=P2,﹣5),Q(﹣10),SBPQ=17P2,﹣1),Q50),SBPQ=5

【解析】试题分析:(1)由对称性和A(2,3),B(4,3),可知抛物线的对称轴是:x=3,利用顶点式列方程组解出可得抛物线的表达式;

(2)如图1,先利用待定系数法求直线AC的解析式,设点Dm,﹣m+6m﹣5),则点Em,﹣2m+7),根据解析式表示DEAE的长,由已知的比例式列式得结论;

(3)根据题意得:BPQ为等腰直角三角形,分三种情况:

BPQ=90°,BP=PQ,如图2,作辅助线,构建全等三角形,证明BAP≌△QMP,可得结论;如图3,同理可得结论;

BQP=90°,BQ=PQ,如图4,证得:BNQ≌△QMP,则NQ=PM=3,NG=1,BN=5,从而得出结论;如图5,同理易得QNB≌△PMQ,可得结论;

PBQ=90°,BQ=BP,如图6,由于AB=2≠NQ=3,此时不存在符合条件的PQ

试题解析:解:(1)根据题意,设抛物线表达式为y=ax﹣3)2+h

B(4,3),C(6,﹣5)代入得:,解得:,故抛物线的表达式为:y=﹣(x﹣3)2+4=﹣x2+6x﹣5,即:

(2)设直线AC的表达式为y=kx+n,则:,解得:k=﹣2,n=7,∴直线AC的表达式为y=﹣2x+7,设点Dm,﹣m2+6m﹣5),2<m<6,则点Em,﹣2m+7),∴DE=(﹣m2+6m﹣5)﹣(﹣2m+7)=﹣m2+8m﹣12,设直线DE与直线AB交于点G,∵AGEG,∴AG=m﹣2,EG=3﹣(﹣2m+7)=2(m﹣2),m﹣2>0,在Rt△AEG中,AE=m﹣2),由,得=,化简得,2m2﹣11m+14=0,解得:m1=m2=2(舍去),则D).

(3)根据题意得:ABF为等腰直角三角形,假设存在满足条件的点PQ,则BPQ为等腰直角三角形,分三种情况:

BPQ=90°,BP=PQ,如图2,过PMNx轴,过QQMMNM,过BBNMNN易证得:△BAP≌△QMP,∴AB=QM=2,PM=AP=3+2=5,∴P(2,﹣2),Q(﹣3,0),在Rt△QMP中,PM=5,QM=2,由勾股定理得:PQ==,∴SBPQ=PQPB=

如图3,易证得:△BAP≌△PMQ,∴AB=PM=2,AP=MQ=3﹣2=1,∴P(2,2),Q(3,0),在Rt△QMP中,PM=2,QM=1,由勾股定理得:PQ=,∴SBPQ=PQPB=

BQP=90°,BQ=PQ,如图4,易得:BNQ≌△QMP,∴NQ=PM=3,NG=PMAG=3﹣2=1,∴BN=MQ=4+1=5,∴P(2,﹣5),Q(﹣1,0),∴PQ==,∴SBPQ=PQPB==17;

如图5,易得QNB≌△PMQ,∴NQ=PM=3,∴P(2,﹣1),Q(5,0),∴PQ=,∴SBPQ=PQPB= =5;

PBQ=90°,BQ=BP,如图6,过QQNAB,交AB的延长线于N,易得:PAB≌△BNQ,∵AB=2,NQ=3,ABNQ,∴此时不存在符合条件的PQ

综上所述:P(2,﹣2),Q(﹣3,0),SBPQ=P(2,2),Q(3,0),SBPQ=P(2,﹣5),Q(﹣1,0),SBPQ=17P(2,﹣1),Q(5,0),SBPQ=5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点O是等边ABC内一点,AOB=110°,∠BOC=α,将BOC绕点C按顺时针方向旋转60°ADC,连接OD,得△AOD,若△AOD为等腰三角形,则α=________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在正方形网格中每个小正方形的边长为1格点△ABC的顶点AC的坐标分别为(﹣45)、(﹣13).

1)请在图中正确作出平面直角坐标系

2)请作出ABC关于y轴对称的△ABC

3)点B′的坐标为      ABC′的面积为      

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A()和B(4,m),点P是线段AB上异于A、B的动点,过点PPCx轴于点D,交抛物线于点C.

(1)B点坐标为  ,并求抛物线的解析式;

(2)求线段PC长的最大值;

(3)若PAC为直角三角形,直接写出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tanAOD=________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在正方形网格上有6个三角形:①△ABC;②△BCD;③△BDE;④△BFG;⑤△FGH;⑥△EFK.其中②⑥中与①相似的是( )

A. ②③④ B. ③④⑤ C. ④⑤⑥ D. ②③⑥

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD中,对角线AC、BD交于O,QCD上任意一点,AQBDM,过MMN⊥AMBCN,连AN、QN.下列结论:①MA=MN;②∠AQD=∠AQN; ③SAQN=S五边形ABNQD;④QN是以A为圆心,以AB为半径的圆的切线.其中正确的结论有(  )

A. ①②③④ B. 只有①③④ C. 只有②③④ D. 只有①②

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】邮政部门规定:信函重100克以内(包括100克)每20克贴邮票0.8元,不足20克重以20克计算;超过100克,先贴邮票4元,超过100克部分每100克加贴邮票2元,不足100克重以100克计算.八(9)班有11位同学参加项目化学习知识竞赛,若每份答卷重12克,每个信封重4克,将这11份答卷分装在两个信封中寄出,所贴邮票的总金额最少是_________元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格中,每个小方格的边长都为1,△各顶点都在格点上.若点的坐标为(03),请按要求解答下列问题:

1)在图中建立符合条件的平面直角坐标系;

2)根据所建立的坐标系,写出点和点的坐标;

3)画出△关于轴的对称图形△

查看答案和解析>>

同步练习册答案