精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△AOB中,两直角边OA,OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数 的图象恰好经过斜边A′B的中点C,SABO=4,tan∠BAO=2,则k的值为( )

A.3
B.4
C.6
D.8

【答案】C
【解析】设点C坐标为(x,y),作CD⊥BO′交边BO′于点D,

∵tan∠BAO=2,

=2,

∵SABO= AOBO=4,

∴AO=2,BO=4,

∵△ABO≌△A'O'B,

∴AO=A′O′=2,BO=BO′=4,

∵点C为斜边A′B的中点,CD⊥BO′,

∴CD= A′O′=1,BD= BO′=2,

∴y=BO﹣CD=4﹣1=3,x=BD=2,

∴k=xy=32=6.

所以答案是:C.

【考点精析】掌握比例系数k的几何意义是解答本题的根本,需要知道几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明在某商店购买商品AB3次,只有一次购买时,商品同时打折,其余两次均按标价购买,三次购买商品AB的数量和费用如下表:

购买商品A的数量()

购买商品B的数量()

购买总费用()

第一次购买

7

6

1350

第二次购买

4

8

1320

第三次购买

10

9

1188

1)小明以折扣价购买商品的是第_____次购物;

2)求商品AB的标价;

3)若商品AB的折扣相同,问商店是打几折出售的这两种商品.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题中,真命题是( )

A. 如果三角形三个角的度数比是3:4:5,那么这个三角形是直角三角形

B. 如果直角三角形两直角边的长分别为ab,那么斜边的长为a2+b2

C. 若三角形三边长的比为1:2:3,则这个三角形是直角三角形

D. 如果直角三角形两直角边分别为ab,斜边为c,那么斜边上的高h的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.

(1)求证:AC2=ABAD;
(2)求证:CE∥AD;
(3)若AD=5,AB=7,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如图(1),根据勾股定理,则a2+b2=c2,若△ABC不是直角三角形,如图(2)和图(3),请你类比勾股定理,试猜想a2+b2与c2的关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠1+∠2﹦180°,∠3﹦∠B,则DEBC,下面是王华同学的推导过程﹐请你帮他在括号内填上推导依据或内容.

证明:

∵∠1+∠2﹦180(已知),

∠1﹦∠4 _________________

∴∠2﹢_____﹦180°.

EHAB___________________________________

∴∠B﹦∠EHC________________________________

∵∠3﹦∠B(已知)

∴ ∠3﹦∠EHC____________________

DEBC__________________________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列算式:

①1×3-22=3-4=-1;

②2×4-32=8-9=-1;

③3×5-42=15-16=-1;

(1)请按照以上规律写出第10个等式。

(2)请按照以上规律写出第n个等式。

(3)(2)中的式子一定成立吗?若不一定成立,请举出反例;若一定成立,请说出理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从汽车灯的点O处发出的一束光线经灯的反光罩反射后沿CO方向平行射出,如入射光线OA的反射光线为AB,OAB=75°.在如图中所示的截面内,若入射光线OD经反光罩反射后沿DE射出,且∠ODE=22°.则∠AOD的度数是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?

查看答案和解析>>

同步练习册答案