【题目】如图 1,在正方形 ABCD 中,对角线 AC, BD 交于点 O ,点 E 在 AB 上,点 F 在 BC 的延长线上,且 AE CF .连接 EF 交 AC 于点 P, 分别连接 DE, DF .
(1)求证: ADE CDF ;
(2)求证: PE PF ;
(3)如图 2,若 PE BE, 则的值是 .(直接写出结果即可).
科目:初中数学 来源: 题型:
【题目】货车在公路A处加满油后,以每小时60千米的速度匀速行驶,前往与A处相距360千米的B处.下表记录的是货车一次加满油后油箱剩余油量y(升)与行驶时间x(时)之间的关系:
(1)如果y关于x的函数是一次函数,求这个函数解析式(不要求写出自变量的取值范围)
(2)在(1)的条件下,如果货车的行驶速度和每小时的耗油量都不变,货车行驶4小时后到达C处,C的前方12千米的D处有一加油站,那么在D处至少加多少升油,才能使货车到达B处卸货后能顺利返回会D处加油?(根据驾驶经验,为保险起见,油箱内剩余油量应随时不少于10升)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选一类最喜爱的电视节目,以下是根据调查结果绘制的不完整统计表,根据表中信息,回答下列问题:
喜爱的电视节目类型 | 人数 | 频率 |
新闻 | 4 | 0.08 |
体育 | / | / |
动画 | 15 | / |
娱乐 | 18 | 0.36 |
戏曲 | / | 0.06 |
(1)本次共调查了_______名学生,若将各类电视节目喜爱的人数所占比例绘制成扇形统计图,则“喜爱动画”对应扇形的圆心角度数是_______;
(2)该校共有2000名学生,根据调查结果估计该校“喜爱体育”节目的学生人数;
(3)在此次问卷调查中,甲、乙两班分别有人喜爱新闻节目,若从这人中随机抽取人去参加“新闻小记者”培训,求抽取的人来自不同班级的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:,且、、分别是点A. B. C在数轴上对应的数.
(1)写出=___;=___;=___.
(2)若甲、乙、丙三个动点分别从A.B.C三点同时出发沿数轴负方向运动,它们的速度分别是1、2、4,(单位/秒),运行秒后,甲、乙、丙三个动点对应的位置分别为:,,,当时,求式子的值.
(3)若甲、乙、丙三个动点分别从A,B,C三点同时出发沿数轴正方向运动,它们的速度分别是1,2,4(单位/秒),运动多长时间后,乙与甲、丙等距离?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D是BC的中点,E是AD的中点,过A点作BC的平行线交BE的延长线于F,连接CF.
(1)线段AF与CD相等吗?为什么?
(2)如果AB=AC,试猜测四边形ADCF是怎样的特殊四边形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知线段AB=m(m为常数),点C为直线AB上一点(不与点A、B重合),点M、N分别在线段BC、AC上,且满足CN=3AN,CM=3BM.
(1)如图,当点C恰好在线段AB中点,且m=8时,则MN=______;
(2) 若点C在点A左侧,同时点M在线段AB上(不与端点重合),请判断CN+2AM -2MN的值是否与m有关?并说明理由.
(3) 若点C是直线AB上一点(不与点A、B重合),同时点M在线段AB上(不与端点重合),求MN长度 (用含m的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(建立概念)如下图,A、B为数轴上不重合的两定点,点P也在该数轴上,我们比较线段和的长度,将较短线段的长度定义为点P到线段的“靠近距离”.特别地,若线段和的长度相等,则将线段或的长度定义为点P到线段的“靠近距离”.
(概念理解)如下图,数轴的原点为O,点A表示的数为,点B表示的数为4.
(1)点O到线段的“靠近距离”为________;
(2)点P表示的数为m,若点P到线段的“靠近距离”为3,则m的值为_________;
(拓展应用)(3)如下图,在数轴上,点P表示的数为,点A表示的数为,点B表示的数为6. 点P以每秒2个单位长度的速度向正半轴方向移动时,点B同时以每秒1个单位长度的速度向负半轴方向移动.设移动的时间为秒,当点P到线段的“靠近距离”为3时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校组织360名师生外出活动,计划租用甲、乙两种型号的客车;经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.
(1)已知师生行李打包后共有164件,若租用10辆甲、乙两种型号的客车,请你帮助设计出该校所有可行的租车方案;
(2)若师生行李打包后共有m件,且170 < m ≤ 184,如果所租车辆刚好把所有师生和行李载走(每辆车均以最多承载量载满),求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y = x2 + bx + c的图象经过点A(l ,0) ,B(﹣3 ,0) ,与y轴交于点C ,抛物线的顶点为D ,对称轴与x轴相交于点E ,连接BD .
(1)求抛物线的解析式 .
(2)若点P在直线BD上,当PE = PC时,求点P的坐标 .
(3)在(2)的条件下,作PF⊥x轴于F ,点M为x轴上一动点 ,N为直线PF上一动点 ,G为抛物线上一动点,当以点F ,N ,G ,M 四点为顶点的四边形为正方形时,求点M的坐标 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com