16£®Ä³Ð¡ÇøÓÐÁ½¶Î³¤¶ÈÏàµÈµÄµÀ·ÐèÓ²»¯£¬ÏÖ·Ö±ðÓɼס¢ÒÒÁ½¸ö¹¤³Ì¶Óͬʱ¿ªÊ¼Ê©¹¤£¬ÈçͼµÄÏ߶κÍÕÛÏßÊÇÁ½¶Ôǰ6ÌìÓ²»¯µÄµÀ·³¤y¼×¡¢yÒÒ£¨Ã×£©ÓëÊ©¹¤Ê±¼äx£¨Ì죩֮¼äµÄº¯ÊýͼÏó£®
¸ù¾ÝͼÏó½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©Ö±½Óд³öy¼×¡¢yÒÒ£¨Ã×£©Óëx£¨Ì죩֮¼äµÄº¯Êý¹ØÏµÊ½£º
¢Ùµ±0£¼x¡Ü6ʱ£¬y¼×=100X£»
¢Úµ±0£¼x¡Ü2ʱ£¬yÒÒ=150X£»µ±2£¼x¡Ü6ʱ£¬yÒÒ=50X+200£»
£¨2£©ÇóͼÖеãMµÄ×ø±ê£¬²¢ËµÃ÷MµÄºá¡¢×Ý×ø±ê±íʾµÄʵ¼ÊÒâÒ壻
£¨3£©Ê©¹¤¹ý³ÌÖУ¬¼×¶ÓµÄÊ©¹¤ËÙ¶ÈʼÖÕ²»±ä£¬¶øÒÒ¶ÓÔÚÊ©¹¤6Ììºó£¬Ã¿ÌìµÄÊ©¹¤ËÙ¶ÈÌá¸ßµ½120Ã×/Ì죬Ԥ¼ÆÁ½¶Ó½«Í¬Ê±Íê³ÉÈÎÎñ£®Á½¶Ó»¹ÐèÒª¶àÉÙÌìÍê³ÉÈÎÎñ£¿

·ÖÎö £¨1£©ÓÉͼ£¬ÒÑÖªÁ½µã£¬¿É¸ù¾Ý´ý¶¨ÏµÊý·¨Áз½³Ì£¬Çóº¯Êý¹ØÏµÊ½£»
£¨2£©ÀûÓ÷½³Ì×éÇó³öµãMµÄ×ø±ê£¬¿ÉÒÔ½â¾öÕâ¸öÎÊÌ⣮
£¨3£©ÕâÊǸö¹¤³ÌÎÊÌ⣬¸ãÇå³þ¼×ÒҵŤ×÷ЧÂÊ£¬Áз½³Ì½â¾ö£®

½â´ð ½â£º£¨1£©ÉèY¼×=KX£¬µã£¨6£¬600£©´úÈëµÃµ½£ºK=100£¬ÔòY¼×=100X£¬
0£¼X¡Ü2ʱ£¬ÉèYÒÒ=K¡äX£¬µã£¨2£¬300£©´úÈëµÃµ½£ºK¡ä=150£¬ÔòYÒÒ=150X£¬
2£¼X¡Ü6ʱ£¬ÉèYÒÒ=K¡åX+b£¬ÓÉÌâÒâµÃ£º$\left\{\begin{array}{l}{2K¡å+b=300}\\{6K¡å+b=500}\end{array}\right.¡à\left\{\begin{array}{l}{K¡å=50}\\{b=200}\end{array}\right.$£¬ÔòYÒÒ=50X+200£®
£¨2£©ÓÉ£º$\left\{\begin{array}{l}{Y=100X}\\{Y=50X+200}\end{array}\right.$µÃµ½£º$\left\{\begin{array}{l}{X=4}\\{Y=400}\end{array}\right.$£¬
¹ÊµãM£¨4£¬400£©£¬±íʾµÄʵ¼ÊÒâÒ壺¹¤×÷µ½µÚ4Ì죬¶¼Íê³ÉÁË400Ã×£®
£¨3£©ÉèÁ½¸ö¶Ó»¹ÐèÒªXÌìÍê³ÉÈÎÎñ£®ÓÉÌâÒ⣺
500+120X=600+100X£¬
½âµÃX=5£®
¹Ê»¹ÐèÒª5ÌìÍê³ÉÈÎÎñ£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÓôý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý¹ØÏµÊ½£¬²¢»áÓÃÒ»´Îº¯Êý½â¾öʵ¼ÊÎÊÌ⣮ÐèÒª¾ß±¸ÀûÓù¤³ÌÎÊÌâ½â¾öʱ¼äÎÊÌâµÄÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®y=$\frac{6}{x}$ÉÏÓÐÁ½µãA£¨x1£¬y1£©ÓëB£¨x2£¬y2£©£¬Èôx1£¼x2£¬Ôòy1Óëy2µÄ¹ØÏµÊÇ£¨¡¡¡¡£©
A£®y1£¾y2B£®y1£¼y2C£®y1=y2D£®²»ÄÜÈ·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªµãA£¨0£¬a£©£¬Å×ÎïÏßy=-a£¨x-a£©2+bÓëxÖá½»ÓÚB¡¢CÁ½µã£¨|OB|£¼|OC|£©£¬¶¥µãΪD£¬ÇÒAD¡ÎBC£¬tan¡ÏABO=$\frac{3}{2}$£¬ÔòÂú×ãÌõ¼þµÄÅ×ÎïÏßÓУ¨¡¡¡¡£©
A£®1ÌõB£®2ÌõC£®3ÌõD£®4Ìõ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Ò»Ôª¶þ´Î·½³Ì4x2-3x-5=0µÄÒ»´ÎÏîϵÊýÊÇ£¨¡¡¡¡£©
A£®-5B£®4C£®-3D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬¼×¡¢ÒÒ·Ö±ðÊÇ4µÈ·Ö¡¢3µÈ·ÖµÄÁ½¸öԲתÅÌ£¬Ö¸Õë¹Ì¶¨£¬×ªÅÌת¶¯Í£Ö¹ºó£¬Ö¸ÕëÖ¸ÏòijһÊý×Ö£®
£¨1£©Ö±½Óд³öת¶¯¼×ÅÌÍ£Ö¹ºóÖ¸ÕëÖ¸ÏòÊý×Ö¡°1¡±µÄ¸ÅÂÊ£»
£¨2£©Ð¡»ªºÍСÃ÷ÀûÓÃÕâÁ½¸öתÅÌ×öÓÎÏ·£¬Á½ÈË·Ö±ðͬʱת¶¯¼×¡¢ÒÒÁ½¸öתÅÌ£¬Í£Ö¹ºó£¬Ö¸Õë¸÷Ö¸ÏòÒ»¸öÊý×Ö£¬ÈôÁ½Êý×ÖÖ®»ýΪ·Ç¸ºÊýÔòС»ªÊ¤£»·ñÔò£¬Ð¡Ã÷ʤ£®ÄãÈÏΪÕâ¸öÓÎÏ·¹«Æ½Âð£¿ÇëÄãÀûÓÃÁоٷ¨ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Èô|m+3|+£¨n-2£©2=0£¬Ôòm+nµÄֵΪ£¨¡¡¡¡£©
A£®1B£®-1C£®5D£®-5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÈôʵÊýx£¬yÂú×ã$\sqrt{x-2}+{£¨y+\sqrt{2}£©^2}$=0£¬Ôò´úÊýʽyxµÄÖµÊÇ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬µãDÊÇ¡ÏAOBÄÚÒ»µã£¬µãEÊÇODÉÏÒ»µã£¬DM¡ÍOAÓÚM£¬DN¡ÍOBÓÚN£¬EP¡ÍOAÓÚP£¬EQ¡ÍOBÓÚQ£¬DM=DN£®ÇóÖ¤£ºEP=EQ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®¶àÏîʽ18xn+1-24xn-1µÄ¹«ÒòʽÊÇ6xn-1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸