【题目】如图,正比例函数y1=kx与反比例函数(x>0)交于点A(2,3),AB⊥x轴于点B,平移直线y1=kx使其经过点B,得到直线y2,y2与y轴交于点C,与交于点D.
(1)求正比例函数y1=kx及反比例函数的解析式;
(2)求点D的坐标;
(3)求△ACD的面积.
【答案】(1)y1=x,;(2)D坐标为(,);(3).
【解析】
(1)用待定系数法,即可求得;(2)y2由y1平移得到,所以设y2=x+b,然后通过点B求出平移后的函数解析式,然后与联立,即可确定D的坐标;(3)通过D点坐标确定DE的长,用S△ACD=S△OCD面积相等,法求出OC的长,计算即可.
解:(1)将点A(2,3)分别带入y1=kx、得3=2k、,解得k=,m=6,
∴正比例函数y1=kx及反比例函数的解析式分别为y1=x、;
(2)∵y2由y1平移得到,所以设y2=x+b,
∵AB⊥x轴,
∴B(2,0),将其带入y2=x+b得b=-3,
∴y2=x-3,
解得,(舍),
∴点D坐标为(,);
(3)如答图,连接OD,作DE⊥y轴于E,则DE=,
∵直线y1∥y2,
∴S△ACD=S△OCD=×OC×DE=×3×()=.
科目:初中数学 来源: 题型:
【题目】如图,形如量角器的半圆O的直径DE-12cm,形如三角板的△ABC中,∠ACB=90°,tan∠ABC= ,BC=12cm半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上。设运动时间为t(s),当t=0s时,半圆O在△ABC的左侧,OC=8cm.
(1)点C到直线AB的距离为 ________cm;
(2)当t= ________(s)时,⊙O与AC所在直线第一次相切;当t=________(s)时,⊙O与AC所在直线第二次相切;
(3)当t为何值时,直线AB与半圆O所在的圆相切;
(4)当△ABC的一边所在直线与圆O相切时,若⊙O与△ABC有重叠部分,直接写出重叠部分的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中卷第九“勾股”章,主要讲述了以测量问题为中心的直角三角形三边互求的关系.其中记载:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”译文:“如图,今有一座长方形小城,东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门.走出东门15里处有棵大树,问走出南门多少步恰好能望见这棵树?”(注:1里=300步)你的计算结果是:出南门________步而见木.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是平行四边形,对角线在轴正半轴上,位于第一象限的点和第二象限的点分别在双曲线和的一个分支上,分别过点作轴的垂线段,垂足分别为点和,则以下结论:
①; ②阴影部分面积是;
③当时,; ④若是菱形,则两双曲线既关于x轴对称,也关于y轴对称.
其中正确结论的个数是
A. 个B. 个C. 个D. 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:①abc>0;②9a+3b+c<0;③c>﹣1;④关于x的方程ax2+bx+c=0(a≠0)有一个根为,其中正确结论的个数为( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.
根据以上信息,网答下列问题
(1)直接写出图中a,m的值;
(2)分别求网购与视频软件的人均利润;
(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线经过点和 ,与轴交于另一点,顶点为.
(1)求抛物线的解析式,并写出点的坐标;
(2)如图,点分别在线段上(点不与重合),且,则能否为等腰三角形?若能,求出的长;若不能,请说明理由;
(3)若点在抛物线上,且,试确定满足条件的点的个数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将背面完全相同,正面上分别写有数字1,2,3,4的四张卡片混合后,嘉辉从中随机地抽取一张,把卡片上的数字作为被减数。将形状、大小完全相同,分别标有数字1,2,3的三个小球混合后,向东从中随机地抽取一个,把小球上的数字作为减数,然后计算出这两数的差。
(1)请你用画树状图或列表的方法,求这两数的差为0的概率;
(2)嘉辉与向东做游戏,规则是:若这两数的差为非负数,则嘉辉赢;否则,向东赢。你认为该游戏公平吗?请说明理由。如果不公平,请你修改游戏规则,使游戏公平。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com