分析 根据等腰三角形的性质得到∠DBC=∠DCB,再结合∠1=∠2,利用等量相加和相等可得∠ABC=∠ACB,从而可知△ABC是等腰三角形,于是AB=AC,再结合BD=DC,∠1=∠2,利用SAS可证△ABD≌△ACD,从而有∠BAD=∠CAD,即AD平分∠BAC.
解答
证明:如右图所示,
∵BD=DC,
∴∠DBC=∠DCB,
又∵∠1=∠2,
∴∠1+∠DBC=∠2+∠DCB,
即∠ABC=∠ACB,
∴△ABC是等腰三角形,
∴AB=AC,
在△ABD和△ACD中,
$\left\{\begin{array}{l}{BD=CD}\\{∠1=∠2}\\{AB=AC}\end{array}\right.$,
∴△ABD≌△ACD(SAS),
∴∠3=∠4.
点评 本题考查了等腰三角形的判定和性质、全等三角形的判定和性质,解题的关键是证明△ABC是等腰三角形.
科目:初中数学 来源: 题型:选择题
| A. | x+$\frac{1}{x}$=1 | B. | ax2+bx+c=0 | C. | x(x-1)=x | D. | x+$\sqrt{x-1}=0$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | a+(b+c)=ab+c | B. | a2-[-(-a+b)]-a2-a+b=a2-a+b | ||
| C. | a+2(b-c)=a+2b-c | D. | a-(b+c-d)=a-b-c+d |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com