精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角坐标系内,O为原点,点A的坐标为(100),点B在第一象限内,BO5sinBOA. 求:(1)B的坐标;(2)cosBAO的值.

【答案】1B的坐标为(43);(2cosBAO.

【解析】试题分析:(1BHOA垂足为HRt△OHB中,根据锐角三角函数的定义及已知条件求得BH的长,再根据勾股定理求得OH的长,即可得点B的坐标;(2)先求得AH的长,在Rt△AHB中,根据勾股定理求得AB的长,根据锐角三角函数的定义即可求得cos∠BAO的值.

试题解析:

(1)如图所示,作BHOA 垂足为H

RtOHB中,∵BO5sinBOA,∴BH=3,∴OH4,∴点B的坐标为(43)

(2)OA10OH4,∴AH6.在RtAHB中,∵BH=3,∴AB,∴cosBAO==

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】数学活动——探究特殊的平行四边形

问题情境

如图,在四边形ABCD中,AC为对角线,AB=AD,BC=DC请你添加条件,使它们成为特殊的平行四边形

提出问题

(1)第一小组添加的条件是“ABCD”,则四边形ABCD是菱形请你证明;

(2)第二小组添加的条件是“B=90°,BCD=90°”,则四边形ABCD是正方形请你证明

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+c(a0)的图象与x轴交于点A(﹣1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:

①当x3时,y0;②3a+b0;③﹣1a;④4ac﹣b28a;

其中正确的结论是(

A.①③④ B.①②③ C.①②④ D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某文具店准备购进AB两种型号的书包共50个进行销售,两种书包的进价、售价如下表所示:

书包型号

进价(元/个)

售价(元/个)

A

200

300

B

100

150

购进这50个书包的总费用不超过7300元,且购进B型书包的个数不大于A型书包个数的

1)该文具店有哪几种进货方案?

2)若该文具店购进的50个书包全部售完,则该文具店采用哪种进货方案,才能获得最大利润?最大利润是多少?(利润=售价﹣进价)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A处,离益阳大道的距离(AC)30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,∠BAC75°.

(1)BC两点的距离;

(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?

(计算时距离精确到1米,参考数据:sin75°≈0.9659cos75°≈0.2588tan75°≈3.732 ≈1.73260千米/小时≈16.7/)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平行四边形ABCD中,点O是对角线BD中点,点E在边BC上,EO的延长线与边AD交于点F,连接BFDE,如图1

1)求证:四边形BEDF是平行四边形;

2)在(1)中,若DEDC,∠CBD45°,过点CDE的垂线,与DEBDBF分别交于点GHR,如图2

①当CD6CE4时,求BE的长.

②探究BHAF的数量关系,并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直角坐标系中已知点P(2,-1)T(t0)x轴上的一个动点.

(1)求点P关于原点的对称点P′的坐标;

(2)t取何值时P′TO是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图拦水坝的横断面为等腰梯形ABCD坝顶宽BC6 m坝高为3.2 m为了提高水坝的拦水能力需要将水坝加高2 m并且保持坝顶宽度不变迎水坡CD的坡度不变但是背水坡的坡度由原来的12变成12.5(坡度是坡高与坡的水平长度的比)求加高后的坝底HD的长为多少

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践

阅读以下材料:

定义:两边分别相等且夹角互补的两个三角形叫做“互补三角形”.

用符号语言表示为:如图①,在△ABC与△DEF中,如果AC=DE,∠C+E=180°,BC=EF,那么△ABC与△DEF是互补三角形.

反之,“如果△ABC与△DEF是互补三角形,那么有AC=DE,∠C+E=180°,BC=EF”也是成立的.

自主探究

利用上面所学知识以及全等三角形的相关知识解决问题:

1)性质:互补三角形的面积相等

如图②,已知△ABC与△DEF是互补三角形.

求证:△ABC与△DEF的面积相等.

证明:分别作△ABC与△DEF的边BCEF上的高线,则∠AGC=DHE=90°

…… (将剩余证明过程补充完整)

2)互补三角形一定不全等,请你判断该说法是否正确,并说明理由,如果不正确,请举出一个反例,画出示意图.

查看答案和解析>>

同步练习册答案