分析 (1)根据正方形的性质可得AB=AE,AC=AG,∠BAE=∠GAC=90°,然后利用“边角边”证明△ABG和△AEC全等,根据全等三角形对应边相等可得BG=EC;
(2)全等三角形对应角相等可得∠ABG=∠AEC,设BG的延长线交EC于H,然后求出∠ABG+∠ACE=90°,从而得到∠BHC=90°,再根据垂直的定义证明即可.
解答 证明:(1)在正方形ABDE和正方形AGFC中,AB=AE,AC=AG,∠BAE=∠GAC=90°,
在△ABG和△AEC中,
$\left\{\begin{array}{l}{AB=AE}\\{∠BAE=∠GAC=90°}\\{AC=AG}\end{array}\right.$,
∴△ABG≌△AEC(SAS),
∴BG=EC,
(2)∵△ABG≌△AEC,
∴∠ABG=∠AEC,
设BG交EC于H,![]()
∵∠AEC+∠ACE=90°,
∴∠ABG+∠ACE=90°,
∴∠BHC=180°-90°=90°,
∴BG⊥EC.
点评 本题考查了正方形的性质,全等三角形的判定与性质,熟练掌握三角形全等的判定方法并根据正方形的性质找出全等的条件是解题的关键,此类题目,各小题的求解思路相同是解题的突破点.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com