精英家教网 > 初中数学 > 题目详情

【题目】企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.16月,该企业向污水厂输送的污水量y1(吨)与月份x1≤x≤6,且x取整数)之间满足的函数关系如下表:

月份x(月)

1

2

3

4

5

6

输送的污水量y1(吨)

12000

6000

4000

3000

2400

2000

712月,该企业自身处理的污水量y2(吨)与月份x7≤x≤12,且x取整数)之间满足二次函数关系式为a≠0).其图象如图所示.16月,污水厂处理每吨污水的费用:z1(元)与月份x之间满足函数关系式: ,该企业自身处理每吨污水的费用:z2(元)与月份x之间满足函数关系式: 712月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.

1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1y2x之间的函数关系式;

2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用;

3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a-30%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18000元,请计算出a的整数值.

(参考数据:≈15.2≈20.5 ≈28.4

【答案】(1)y1=1≤x≤6,且x取整数);y2=x2+100007≤x≤12,且x取整数);(2)去年5月用于污水处理的费用最多,最多费用是22000元;(3a的值是57

【解析】

1)利用函数图象得出:图象过(710049),(1210144)点,求出解析式即可;

2)利用当7≤x≤12时,求出处理污水的费用,即可得出答案;

3)利用今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a30%,得出等式120001+a%×1.5×[1+a-30%]×1-50%=18000,进而求出即可.

、(1)根据表格中数据可以得出xy=定值,则y1x之间的函数关系为反比例函数关系:

y1=,将(112000)代入得:

k=1×12000=12000

y1=1≤x≤6,且x取整数);

根据图象可以得出:图象过(710049),(1210144)点,

代入得:

解得:

y2=x2+100007≤x≤12,且x取整数);

2)当1≤x≤6,且x取整数时:

=-1000x2+10000x-3000

a=-10000x=-=51≤x≤6

∴当x=5时,W最大=22000(元),

7≤x≤12时,且x取整数时,

W=2×12000-y2+1.5y2=2×12000-x2-10000+1.5x2+10000),

=-x2+19000

a=-0x=-=0

7≤x≤12时,Wx的增大而减小,

∴当x=7时,W最大=18975.5(元),

2200018975.5

∴去年5月用于污水处理的费用最多,最多费用是22000元;

3)由题意得:120001+a%×1.5×[1+a-30%]×1-50%=18000

t=a%,整理得:10t2+17t-13=0

解得:t=

≈28.4

t1≈0.57t2≈-2.27(舍去),

a≈57

答:a的值是57

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了了解全校3000名学生对学校设置的足球、篮球、乒乓球、羽毛球、排球共五项球类活动的喜爱情况,在全校范围内随机调查了m名学生(每名学生必选且只能选择这五项活动中的一种)进行了问卷调查,将统计数据绘制成如下两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:

1m   n   .并补全图中的条形统计图.

2)请你估计该校约有多少名学生喜爱打乒乓球.

3)在抽查的m名学生中,有ABCD10名学生喜欢羽毛球活动,学校打算从ABCD4名女生中,选取2名参加全市中学生女子羽毛球比赛,请用列表法或画树状图法,求同时选中BC的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线ykx+b(k0),经过点(60),且与坐标轴围成的三角形的面积是9,与函数y(x0)的图象G交于AB两点.

(1)求直线的表达式;

(2)横、纵坐标都是整数的点叫作整点.记图象G在点AB之间的部分与线段AB围成的区域(不含边界)W

m2时,直接写出区域W内的整点的坐标   

若区域W内恰有3个整数点,结合函数图象,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从 2018 9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了手机伴我健康行主题活动,他们随机抽取部分学生进行使用手机目的每周使用手机的时间的问卷调查,并绘制成如图①,②的 统计图,已知查资料的人数是 40人.请你根据以上信息解答下列问题:

(1)在扇形统计图中,玩游戏对应的百分比为______,圆心角度数是______度;

(2)补全条形统计图;

(3)该校共有学生2100人,估计每周使用手机时间在2 小时以上(不含2小时)的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A11)在直线y=kx上,过点A1A1B1y轴交直线y=x于点B1,以A1B1为边在A1B1的右侧作正方形A1B1C1D1,直线C1D1分别交直线y=kxy=xA2B2两点,以A2B2为边在A2B2的右侧作等正方形A2B2C2D2…,直线C2D2分别交直线y=kxy=xA3B3两点,以A3B3为边在A3B3的右侧作正方形A3B3C3D3,…,按此规律进行下去,则正方形AnBnCnDn的面积为____________.(用含正整数n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】爸爸想送小明一个书包和一辆自行车作为新年礼物,在甲、乙两商场都发现同款的自行车单价相同,书包单价也相同,自行车和书包单价之和为452元,且自行车的单价比书包的单价4倍少8元.

(1)求自行车和书包单价各为多少元;

(2)新年来临赶上商家促销,乙商场所有商品打八五折(即8.5折)销售,甲全场购物毎满100元返购物券30元(即不足100元不返券,满100元送30元购物券,满200元送60元购物券),并可当场用于购物,购物券全场通用.但爸爸只带了400元钱,如果他只在同一家商场购买看中的两样物品,在哪一家买更省钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】高低杠是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.

如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE82.4°,高杠的支架BD与直线AB的夹角∠DBF80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出以下结论:abc0 b24ac0 4b+c0 若B(﹣y1)、Cy2)为函数图象上的两点,则y1y2当﹣3≤x≤1时,y≥0,

其中正确的结论是(填写代表正确结论的序号)__________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:345;三个连续的偶数中的勾股数6810;事实上,勾股数的正整数倍仍然是勾股数.

(1)另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a2n+1b2n2+2nc2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的abc的数是一组勾股数.

(2)然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a(m2n2)bmnc(m2+n2)(mn为正整数,mn时,abc构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n5,求该直角三角形另两边的长.

查看答案和解析>>

同步练习册答案