【题目】如图,抛物线y=x2+bx+c与x轴交于A(-1,0),与y轴交于C(0,-2);直线经过点A且与抛物线交于另一点B.
(1)直接写出抛物线的解析式 ;
(2)如图(1),点M是抛物线上A,B两点间的任一动点,MN⊥AB于点N,试求出MN的最大值 ,并求出MN最大时点M的坐标;
(3)如图(2),连接AC,已知点P的坐标为(2,1),点Q为对称轴左侧的抛物线上的一动点,过点Q作QF⊥x轴于点F,是否存在这样的点Q,使得∠FQP=∠CAO.若存在,请直接写出点Q的坐标;若不存在,请说明理由.
【答案】(1)y=x2-x-2 ;(2);M(,);(3)存在;(,)或(,)
【解析】
(1)把A,C两点坐标代入y=x2+bx+c求出b,c的值即可;
(2)过点M作ME⊥x轴于点D,交AB于点E,设M(m,m2-m-2),则E(m,m+),可求出ME=-m2+m+,证明△AED∽△MEN得MN=-m2+m+,利用二次函数的性质可得结论;
(3)点Q有两个位置,使得∠FQP=∠CAO,分别求出此时PQ的解析式,与抛物线方程联立方程组,求出方程组的解即为Q点的坐标.
解:(1)将A(-1,0),C(0,-2)代入解析中得
,解得
∴抛物线的解析式为y=x2-x-2,
(2)如图,过点M作ME⊥x轴于点D,交AB于点E.
设M(m,m2-m-2) (-1≤m≤),
则E(m,m+),
ME=(m+)-(m2-m-2)=-m2+m+.
在△AED与△MEN中,∠AED=∠MEN,∠ADE=∠MNE,
∴△AED∽△MEN,
∴,
∴MN=ME=(-m2+m+)=-m2+m+ (-1≤m≤),
∴当时,MN最大,为,
此时M(,).
(3)存在,
由题易知,抛物线的对称轴为直线,
过点P作PG⊥y轴于点G,连接OP,
容易发现OG=OA=1,PG=OC=2,∠PGO=∠COA=90°,
∴△PGO≌△COA,
∴∠POG=∠CAO,
延长PO交抛物线于点Q1,过Q1作Q1F1⊥x轴于点F1,
此时∠F1Q1P=∠POG=∠CAO.
易知直线OP的解析式为,
令,
解得,(舍去),
∴.
同理,在y轴上找一点O′,使O′G=OG=1,
容易证明△PGO′≌△COA,
∴∠PO′G=∠CAO,
延长PO′交抛物线于点Q2,
过点Q2作Q2F2⊥x轴于点F2,
此时,∠F2Q2P=∠PO′G=∠CAO.
易知直线O′P的解析式为,
令,
解得,(舍去),
∴.
∴点Q的坐标为(,)或(,).
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a,b是实数,a≠0).
(1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求函数y1的表达式.
(2)若函数y1的图象经过点(r,0),其中r≠0,求证:函数y2的图象经过点(,0).
(3)设函数y1和函数y2的最小值分别为m和n,若m+n=0,求m,n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC是⊙O的直径,PA、PB是⊙O的切线,切点分别是点A、B
(1)如图1,若∠BAC=25°,求∠P的度数.
(2)如图2,若M是劣弧AB上一点,∠AMB=∠AOB,求∠P的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线交轴于,交轴于,直线平行于轴,与抛物线另一个交点为.
(1)求抛物线的函数表达式及点D的坐标;
(2)若抛物线与抛物线关于轴对称,是轴上的动点,在抛物线上是否存在一点,使得以为顶点且为边的四边形是平行四边形,若存在,请求出点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1)是小明家购买的一款台灯,现忽略支架的粗细,得到它的侧面简化示意图如图(2)所示.支架AB与桌面的夹角为80°,支架AB与支架BC的夹角为100°,CD平行于桌面,支架AB,BC的长度均为20cm.求灯泡顶端D到桌面的距离DE.(结果精确到1cm.参考数据:sin80°≈0.98,cos80°≈0.17,tan80°≈5.67,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)图象与x轴交于A(﹣1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(不包括这两个点),下列结论:
①当﹣1<x<3时,y>0;②﹣1<a<﹣;③当m≠1时,a+b>m(am+b);④4ac﹣b2>8a其中正确的结论是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“卓黑宝”的种植面积达到196亩.
(1)求该基地这两年“早黑宝”种植面积的平均增长率;
(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦AC与BD交于点E,且AC=BD,连接AD,BC.
(1)求证:△ADB≌△BCA;
(2)若OD⊥AC,AB=4,求弦AC的长;
(3)在(2)的条件下,延长AB至点P,使BP=2,连接PC.求证:PC是⊙O的切线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com