【题目】作图题:已知∠MAB=60°,以AB的长为菱形ABCD的边长,点D在AM上,
(1)作出这个菱形.(保留作图痕迹,不写作法,不用证明)
(2)若AB=2,则对角线AC的长为 .
【答案】(1)详见解析;(2)2
【解析】
(1)以点A为圆心,以AB长为半径画弧交AM于点D,分别以点B、D为圆心,AB长为半径画弧,两弧在角的内部交于点C,连接BC、CD即可得;
(2)连接AC、BD,它们相交于点O,如图,根据菱形的性质可知∴AC⊥BD,AO=CO,∠BAC=∠DAC=∠BAD=×60°=30°,在Rt△ABO中,根据含30度的直角三角形的性质可得OB=AB=1,根据勾股定理可求出AO的长,继而可得AC长.
(1)如图,四边形ABCD为所作;
(2)连接AC、BD,它们相交于点O,如图,
∵四边形ABCD为菱形,
∴AC⊥BD,AO=CO,∠BAC=∠DAC=∠BAD=×60°=30°,
在Rt△ABO中,OB=AB=1,
∴AO=,
∴AC=2OA=2.
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△ADE均为等腰直角三角形,连接BE,点F、G分别为AD、AC的中点,连接FG.在△ADE绕A旋转的过程中,当B、D、E三点共线时,AB=,AD=1,则线段FG的长为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC,∠A=30°,AB=16,以AB为直径的⊙O与BC边相交于点D,与AC交于点F,过点D作DE⊥AC于点E.
(1)求证:DE是⊙O的切线;
(2)求CE的长;
(3)过点B作BG∥DF,交⊙O于点G,求弧BG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图中线段AB所示;慢车离乙地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图中线段OC所示.根据图象进行以下研究.
解读信息:
(1)甲、乙两地之间的距离为 km;
(2)快车的速度是 km/h,慢车的速度是 km/h.
(3)求线段AB与线段OC的解析式;
(4)快、慢两车在何时相遇?相遇时距离乙地多远?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.OD⊥AB,OE⊥AC.
(1)求证:OD=OE.
(2)若O为MN的中点,判断△ABC的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径作⊙O,⊙O交BC于点D,交CA的延长线于点E.过点D作DF⊥AC,垂足为F.
(1)求证:DF为⊙O的切线;
(2)若AB=4,∠C=30°,求劣弧的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】反比例函数y=的图象向右平移个单位长度得到一个新的函数,当自变量x取1,2,3,4,5,…,(正整数)时,新的函数值分别为y1,y2,y3,y4,y5,…,其中最小值和最大值分别为( )
A. y1,y2 B. y43,y44 C. y44,y45 D. y2014,y2015
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠MON=90°,长方形ABCD的顶点B、C分别在边OM、ON上,当B在边OM上运动时,C随之在边ON上运动,若CD=5,BC=24,运动过程中,点D到点O的最大距离为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.
(1)求证:AF+EF=DE;
(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;
(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com