【题目】如图,在平面直角坐标系中,抛物线与轴交于原点和点,点在抛物线上.
(1)求抛物线的表达式,并写出它的对称轴;
(2)求的值;
(3)点在抛物线的对称轴上,如果,求点的坐标.
【答案】(1);对称轴为;(2)2;(3)
【解析】
(1)将点O(0,0),点B(4,0)分别代入使用待定系数法即可求得解析式,然后再使用对称轴公式解答即可;
(2)把点A(3,m)代入y=-x2+4x,求出m的值,得到点A的坐标,过点B作BM⊥OA,交OA于点M,过点A作AE⊥OB,交OB于点E,然后根据三角形的面积和勾股定理,求出线段BM和AM的长,最后运用正切的定义解答即可;
(3)把AB绕点B逆时针旋转90°得到BC,作AE⊥OB于E,CF⊥OB于F,CA交直线x=2于D点,利用△BAC为等腰直角三角形得到∠CAB=45°,证明△ABE≌△BCF得到BF=AE=3,BE=CF=1,则C(1,-1),根据待定系数法求出直线AC的解析式为y=2x-3,然后计算自变量为2对应的一次函数值,即可确定D点的坐标.
解:由待定系数法得:
解得
所以抛物线的表达式为:y=-x2+4x,它的对称轴为:x=
(2)把点A(3,m)代入y=-x2+4x,解得m==3,则点A的坐标为(3,3)
如图:过点B作BM⊥OA,交OA于点M,过点A作AE⊥OB交OB于点E
AE=3,OE=3,BE=4-3=1,OA= , AB=
S△OAB=
∴BM
∴AM=
∴
(3)把AB绕点B逆时针旋转90°得到BC,如图所示,作AE⊥OB于E,CF⊥OB于F,CA交直线x=2于D点,
∵BA=BC,∠ABC=90°,
∴△BAC为等腰直角三角形
∴∠CAB=45°
∵∠ABE=∠BCF,∠AEB=∠BFC=90°
∴△ABE≌△BCF(AAS)
∴BF=AE=3,BE=CF=1
∴C(1,-1)
∴直线AC的解析式为y=2x-3,
∴当x=2时D点坐标为(2,1)
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是( )
A. B. 5C. 6D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数图象的顶点在原点,对称轴为轴.一次函数的图象与二次函数的图象交于两点(在的左侧),且点坐标为.平行于轴的直线过点.
(1)求一次函数与二次函数的解析式;
(2)判断以线段AB为直径的圆与直线的位置关系,并给出证明;
(3)把二次函数的图象向右平移 2 个单位,再向下平移 t 个单位(t>0),二次函数的图象与x 轴交于 M,N 两点,一次函数图象交y 轴于 F 点.当 t 为何值时,过 F,M,N 三点的圆的面积最小?最小面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是△ABC的外接圆⊙O的直径,点P在BC延长线上,PA是⊙O的切线,且∠B=35°.
(1)求∠PAC的度数.
(2)弦CE⊥AD交AB于点F,若AFAB=12,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,点D在边AC上,BD的垂直平分线交CA的延长线于点E,交BD于点F,联结BE,ED2=EAEC.
(1)求证:∠EBA=∠C;
(2)如果BD=CD,求证:AB2=ADAC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影.已知桌面的直径为1.2 m,桌面距离地面1 m.若灯泡距离地面3 m,则地面上阴影部分的面积为 ( )
A. 0.36πm2 B. 0.81πm2 C. 2πm2 D. 3.24πm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明从家步行到校车站台,等候坐校车去学校,图中的折线表示这一过程中小明的路程S(km)与所花时间t(min)间的函数关系;下列说法:①他步行了1km到校车站台;②他步行的速度是100m/min;③他在校车站台等了6min;④校车运行的速度是200m/min;其中正确的个数是( )个.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AD=+2,已知点E是边AB上的一动点(不与A、B重合)将△ADE沿DE对折,点A的对应点为P,当△APB是等腰三角形时,AE=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y1=k1x+b与双曲线在第一象限内交于A、B两点,已知A(1,m),B(2,1).
(1)直接写出不等式y2>y1的解集;
(2)求直线AB的解析式;
(3)设点P是线段AB上的一个动点,过点P作PD⊥x轴于点D,E是y轴上一点,求△PED的面积S的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com