【题目】如图,在△ABC中,AB=AC,以AB为直径的半圆O交BC于点D,交AC于点E,过点A作半圆O的切线交BC的延长线于点F,连结BE,AD
(1)求证:∠F=∠EBC;
(2)若AE=2,tan∠EAD=,求AD的长.
【答案】(1)见解析;(2).
【解析】
(1)由切线的性质可得∠F+∠ABC=90°,可证得∠EBC+∠ACB=90°,由∠ACB=∠ABC,可得∠F=∠EBC;
(2)先求出CE长,则AC可求出,由勾股定理可得AD长.
(1)证明:∵AB为直径,
∴∠AEB=∠CEB=90°,即∠EBC+∠ACB=90°,
∵AF切半圆O于点A,
∴∠FAB=90°,
∴∠F+∠ABC=90°,
∵AB=AC,
∴∠ACB=∠ABC,
∴∠F=∠EBC;
(2)解:∵∠EAD=∠CBE,
∴tan,
∴设CE=x,则BE=2x,AB=AC=2+x.
在Rt△AEB中,22+(2x)2=(2+x)2,
解得,x1=0(舍去),.
∴,
在Rt△ACD中,CD2+AD2=AC2,
∴(),
∴.
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于点A(-1,0),点B(-3,0),且OB=OC,
(1)求抛物线的解析式;
(2)点P在抛物线上,且∠POB=∠ACB,求点P的坐标;
(3)抛物线上两点M,N,点M的横坐标为m,点N的横坐标为m+4.点D是抛物线上M,N之间的动点,过点D作y轴的平行线交MN于点E.
①求DE的最大值.
②点D关于点E的对称点为F.当m为何值时,四边形MDNF为矩形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解七、八年级学生英语听力训练情况(七、八年级学生人数相同),某周从这两个年级学生中分别随机抽查了30名同学,调查了他们周一至周五的听力训练情况,根据调查情况得到如下统计图表:周一至周五英语听力训练人数统计表
年级 | 参加英语听力训练人数 | ||||
周一 | 周二 | 周三 | 周四 | 周五 | |
七年级 | 15 | 20 | 30 | 30 | |
八年级 | 20 | 24 | 26 | 30 | 30 |
合计 | 35 | 44 | 51 | 60 | 60 |
(1)填空:________;
(2)根据上述统计图表完成下表中的相关统计量:
年级 | 平均训练时间的中位数 | 参加英语听力训练人数的方差 |
七年级 | 24 | 34 |
八年级 | 14.4 |
(3)请你利用上述统计图表,对七、八年级英语听力训练情况写出两条合理的评价;
(4)请你结合周一至周五英语听力训练人数统计表,估计该校七、八年级共480名学生中周一至周五平均每天有多少人进行英语听力训练.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解不等式组请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得____________________;
(Ⅱ)解不等式②,得_______________________;
(III)把不等式①和②的解集在数轴上表示出来:
(IV)原不等式组的解集为________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在两建筑物之间有一高为15米的旗杆,从高建筑物的顶端A点经过旗杆顶点恰好看到矮建筑物的底端墙角C点,且俯角a为60°,又从A点测得矮建筑物左上角顶端D点的俯角β为30°,若旗杆底部点G为BC的中点(点B为点A向地面所作垂线的垂足)则矮建筑物的高CD为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=2,点F是边BC上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG,CG,则四边形AGCD的面积的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.
(1)求证:PD是⊙O的切线;
(2)求证:△ABD∽△DCP;
(3)当AB=5cm,AC=12cm时,求线段PC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若直线l : y kx b k 0 与曲线有 n 个交点,则称直线l 为曲线的“ n 阶共生直线”,交点称为它们的“共生点”.
(1)若直线 y kx b k 0与某曲线的一个“共生点”为 P m, 2m 1,试判断此“共生点”不可能位于第几象限,请说明理由.
(2)若直线 l : y kx 2k k 0 与 x 、 y 轴分别交于 A 、 B 两点,且直线 l 为反比例函数y=的“ 2阶共生直线”,且“共生点”为C、D,求k的取值范围,试证明此时不论 k 取何值,总有 AC BD 成立.
(3)若直线l : y kx 2k k 0 与 x 轴交于点 A ,且直线l 为抛物线 y x2 2x 1的“2 阶共生直线”,且“共生点”为 P 、Q xP xQ ,若 AQ 3AP ,求 k 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数的部分图象如图,图象过点(﹣1,0),对称轴为直线,下列结论:①;②;③;④当时, 随的增大而增大.其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com