精英家教网 > 初中数学 > 题目详情

【题目】为了解黔东南州某县2013届中考学生的体育考试得分情况,从该县参加体育考试的4000名学生中随机抽取了100名学生的体育考试成绩作样本分析,得出如下不完整的频数统计表和频数分布直方图.

成绩分组

组中值

频数

25≤x<30

27.5

4

30≤x<35

32.5

m

35≤x<40

37.5

24

40≤x<45

a

36

45≤x<50

47.5

n

50≤x<55

52.5

4

(1)求a、m、n的值,并补全频数分布直方图;

(2)若体育得分在40分以上(包括40分)为优秀,请问该县中考体育成绩优秀学生人数约为多少?

【答案】解:(1)组距是:37.5﹣32.5=5,则a=37.5+5=42.5;

根据频数分布直方图可得:m=12;

则n=100﹣4﹣12﹣24﹣36﹣4=20。

补全频数分布直方图如下:

(2)优秀的人数所占的比例是:=0.6,

该县中考体育成绩优秀学生人数约为:4000×0.6=2400(人)。

【解析】

试题分析:(1)求出组距,然后利用37.5加上组距就是a的值;根据频数分布直方图即可求得m的值,然后利用总人数100减去其它各组的人数就是n的值。

(2)利用总人数4000乘以优秀的人数所占的比例即可求得优秀的人数。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.

(1)求抛物线的解析式和顶点C的坐标;

(2)当∠APB为钝角时,求m的取值范围;

(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).

(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1

(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们用a表示不大于 a 的最大整数,用 a 表示大于 a 的最小整数.例如:2.5 2 3 3 2.5 3 <2.5> 3 <4> 5 < 1.5> 1 .解决下列问题:

1 4.5 ,< 3.5> .

2)若x 2 ,则 < x> 的取值范围是 ;若< y > 1,则 y 的取值范围是 .

3)已知 x, y 满足方程组;求 x, y 的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,完成任务:

自相似图形

定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.

任务:

(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为   

(2)如图2,已知ABC中,ACB=90°,AC=4,BC=3,小明发现ABC也是“自相似图形”,他的思路是:过点C作CDAB于点D,则CD将ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则ACD与ABC的相似比为   

(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).

请从下列A、B两题中任选一条作答:我选择   题.

A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=   (用含b的式子表示);

如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=   (用含n,b的式子表示);

B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含b的式子表示);

如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含m,n,b的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:

一般地,在数轴上点表示的实数分别为),则两点的距离.如图,在数轴上点表示的实数分别为-34,则记,因为,显然两点的距离

若点为线段的中点,则,所以,即

解决问题:

1)直接写出线段的中点表示的实数    

2)在点右侧的数轴上有点,且,求点表示的实数

3)在(2)的条件下,点的中点,点的中点,若两点同时沿数轴向正方向运动,点的速度是点速度的2倍,的中点的中点也随之运动,3秒后,,则点的速度为每秒     个单位长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD相交于点OOA是∠EOC的平分线,∠EOD100°

(1)请指出∠BOC的一个补角;

(2)求出∠BOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知为数轴上的两个点,点表示的数为,点表示的数为.

1)现有一只电子蚂蚁从点出发,以每秒个单位长度的速度向左运动,同时另一只电子蚂蚁恰好从点出发,以每秒个单位长度的速度向右运动,设两只电子蚂蚁在数轴上的点处相遇,求点表示的数;

2)若电子蚂蚁从点出发,以每秒个单位长度的速度向左运动,同时另一电子蚂蚁恰好从点出发,以每秒个单位长度的速度向左运动,设两只电子蚂蚁在数轴上的点处相遇,求点表示的数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在平面直角坐标系中,矩形OABC的边OAOC分别在x轴的正半轴、y轴的正半轴上,且OAOC)的长是方程的两个根.

1)如图,求点A的坐标;

2)如图,将矩形OABC沿某条直线折叠,使点A与点C重合,折痕交CB于点D,交OA于点E.求直线DE的解析式;

3)在(2)的条件下,点P在直线DE上,在直线AC上是否存在点Q,使以点ABPQ为顶点的四边形是平行四边形.若存在,请求出点Q坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案