如图,四边形ABCD中,∠A+∠B=200°,∠ADC、∠DCB的平分线相交于点O,则∠COD的度数是( )
![]()
![]()
A.110° B.100° C.90° D.80°
B【考点】多边形内角与外角;三角形内角和定理.
【分析】由于∠A+∠B=200°,根据四边形的内角和定理求出∠ADC+∠DCB的度数,然后根据角平分线的定义得出∠ODC+∠OCD的度数,最后根据三角形内角和定理求出∠COD的度数.
【解答】解:∵∠A+∠B+∠ADC+∠DCB=360°,∠A+∠B=200°,
∴∠ADC+∠DCB=160°.
又∵∠ADC、∠DCB的平分线相交于点O,
∴∠ODC=![]()
∠ADC,∠OCD=![]()
,
∴∠ODC+∠OCD=80°,
∴∠COD=180°﹣(∠ODC+∠OCD)=100°.
故选B.
【点评】本题主要考查了三角形及四边形的内角和定理.三角形的内角和等于180°,四边形的内角和等于360°
科目:初中数学 来源: 题型:
.如图,下列条件中:
(1)∠B+∠BCD=180°;
(2)∠1=∠2;
(3)∠3=∠4;
(4)∠B=∠5.
能判定AB∥CD的条件个数有( )
![]()
![]()
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
在“庆祝建党90周年的红歌传唱活动”比寒中,七位评委给某参赛队打的分数为:92、86、88、87、92、94、86,则去掉一个最高分和一个最低分后,所剩五个分数的平均数和中位数是( )
A.89,92 B.87,88 C.89,88 D.88,92
查看答案和解析>>
科目:初中数学 来源: 题型:
已知∠AOB内部有三条射线,其中OE平分∠BOC,OF平分∠AOC.
(1)如图1,若∠AOB=90°,∠AOC=30°,求EOF的度数;
(2)如图2,若∠AOB=α,求∠EOF的度数(用含α的式子表示);
(3)若将题中的“OE平分∠BOC,OF平分∠AOC”的条件改为“∠EOB=
∠BOC,∠COF=
∠AOC”,且∠AOB=α,求∠EOF的度数(用含α的式子表示)
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com