【题目】如图,CE是平行四边形ABCD的边AB的垂直平分线,垂足为点,CE与DA的延长线交于点E,连接AC,BE,DO,DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②;③;④S四边形AFOE:,其中正确的结论有( )
A.①②③B.①②④C.①②D.②③④
【答案】B
【解析】
根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质判断即可.
解:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵EC垂直平分AB,
∴OA=OB=AB=DC,CD⊥CE,
∵OA∥DC,
∴AE=AD,OE=OC,
∵OA=OB,OE=OC,
∴四边形ACBE是平行四边形,
∵AB⊥EC,
∴四边形ACBE是菱形,故①正确,
∵∠DCE=90°,DA=AE,
∴AC=AD=AE,
∴∠ACD=∠ADC=∠BAE,故②正确,
∵OA∥CD,
,故③错误;
设△AOF的面积为a,则△OFC的面积为2a,△CDF的面积为4a,△AOC的面积=△AOE的面积=3a,
∴四边形AFOE的面积为4a,△ODC的面积为6a
∴S四边形AFOE:S△COD=2:3.故④正确,
故选:B.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,反比例函数y= (x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点,△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是( )
A. 6 B. 10 C. 2 D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2020年1月新冠肺炎大面积爆发,大批的医护人员积极前赴武汉支援一线救治,但是大批的医用物资仍旧极度短缺,我市某中学九年级一班全体同学参加了“加油武汉,加油中国”捐款活动,该班同学捐款情况的部分统计图如图所示:
(1)求该班的总人数,将条形图补充完整.
(2)求出捐款金额的平均数、众数、中位数;
(3)若想在捐款金额为25元的四名同学、、、中选取2位同学负责把钱交到红十字会,请用列表法或画树形图的方法求出恰好选中、两名同学的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点是直线与的交点,点在上,,垂足为,与交于点,平分,.
(1)求证:是的切线;
(2)若的半径为4,求图中阴影部分的面积.(结果保留和根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2020年春季开学后,某校制定了《新冠肺炎疫情防控期间就餐规范》,条例规定:不对面就餐、食而不语、错峰就餐、鼓励打包等就餐措施.为了解学生对规范的认知程度,校园小记者随机调查部分同学,并根据调查结果绘制了如下两幅不完整的统计图表:
请根据以上图表,解答下列问题:
(1)这次被调查的同学共有______人,______,______;
(2)求扇形统计图中B部分所对圆心角度数;
(3)学校团委及政教处准备对“不太了解”及“毫不知情”的同学进行再学习培训,请问我校2400名学生中预计有多少人要接受再学习?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且.
(1)求该抛物线的函数表达式;
(2)设P是(1)中抛物线上的一个动点,当直线OC平分∠ACP时,求点P的坐标;
(3)如图2,点G是线段AC的中点,动点E从点A出发,以每秒1个单位长度的速度向终点B运动,动点F从点B出发,以每秒个单位长度的速度向终点C运动,若E、F两点同时出发,运动时间为t秒.则当t为何值时,的面积是的面积的?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E。那么点D的坐标为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D,E运动的时间是ts(0<t≤15),过点D作DF⊥BC于点F,连接DE,EF,若四边形AEFD为菱形,则t的值为( )
A.20B.15C.10D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在△ABC中,AC=BC=m,D是AB边上的一点,将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.
(1)特例感知 如图1,若∠C=60°,D是AB的中点,求证:AP=AC;
(2)变式求异 如图2,若∠C=90°,m=6,AD=7,过点D作DH⊥AC于点H,求DH和AP的长;
(3)化归探究 如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B落在AC边上两个不同的位置,请直接写出a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com