精英家教网 > 初中数学 > 题目详情
1.如图1,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(n,0)且a、n满足|a+2|+$\sqrt{5-n}$=0,现同时将点A,B分别向上平移4个单位,再向右平移3个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.
(1)求点C,D的坐标及四边形OBDC的面积;
(2)如图2,若 点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)$\frac{∠DCP+∠BOP}{∠CPO}$的值是否发生变化,并说明理由.
(3)在四边形OBDC内是否存在一点P,连接PO,PB,PC,PD,使S△PCD=S△PBD; S△POB:S△POC=1?若存在这样一点,求出点P的坐标,若不存在,试说明理由.

分析 (1)根据被开方数和绝对值大于等于0列式求出b和n,从而得到A、B的坐标,再根据向上平移4个单位,则纵坐标加4,向右平移3个单位,则横坐标加3,求出点C、D的坐标即可,然后利用平行四边形的面积公式,列式计算;
(2)根据平移的性质可得AB∥CD,再过点P作PE∥AB,根据平行公理可得PE∥CD,然后根据两直线平行,内错角相等可得∠DCP=∠CPE,∠BOP=∠OPE,然后求出∠CPO=∠DCP+∠BOP,从而判断出比值不变;
(3)根据面积相等的特殊性可知,点P为平行四边形ABCD对角线的交点,即PB=PC,因此根据中点可求出点P的坐标.

解答 解:(1)如图1,
由题意得,a+2=0,a=-2,则A(-2,0),
5-n=0,n=5,则B(5,0),
∵点A,B分别向上平移4个单位,再向右平移3个单位,
∴点C(1,4),D(8,4);
∵OB=5,CD=8-1=7,
∴S四边形OBDC=$\frac{1}{2}$(CD+OB)×h=$\frac{1}{2}$×4×(5+7)=24;
(2)$\frac{∠DCP+∠BOP}{∠CPO}$的值不发生变化,且值为1,理由是:
由平移的性质可得AB∥CD,
如图2,过点P作PE∥AB,交AC于E,则PE∥CD,
∴∠DCP=∠CPE,∠BOP=∠OPE,
∴∠CPO=∠CPE+∠OPE=∠DCP+∠BOP,
∴$\frac{∠DCP+∠BOP}{∠CPO}$=1,比值不变.

(3)存在,如图3,连接AD和BC交于点P,
∵AB=CD,AB∥CD,
∴四边形ABCD是平行四边形
∴BP=CP,
∴S△PCD=S△PBD; S△POB:S△POC=1,
∵C(1,4),B(5,0)
∴P(3,2).

点评 本题是几何变换的综合题,考查了线段平移与点的坐标的关系,明确点的坐标的平移原则:①上移→纵+,②下移→纵-,③左移→横-,④右移→横+;同时对于面积的关系除了熟记面积公式外,要知道三角形的中线把三角形分成面积相等的两个三角形;第二问中角的比值的证明,在几何中很少出现,不过此题分子与分母中角的大小相等,属于平行线的性质得出的结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.黑板上写有1,2,3,…,1997,1998,这1998个自然数,对它们进行操作,每次操作规则如下:擦掉写在黑板上的三个数后,再添写上所擦掉三个数之和的个位数字.例如:擦掉5,13和1998后,添加上6;若再擦掉6,6,38,添加上0,等等.如果经过998次操作后,发现黑板上剩下两个数,一个是25,求另一个数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.代数式a,a2b,a+b,$\frac{{a}^{2}+b}{2}$π,πR2中,单项式有3个,二次单项式有2个.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,由观察可知,三角形的中心投影是一个三角形,它还可以是线段.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.已知2a+3b=4,3a-2b=11,则10a+2b的值是30.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.计算:$\frac{sin45°}{1+sin60°}$-$\frac{cos45°}{1-sin60°}$+$\sqrt{α(sin30°-cos30°)^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.已知:如图,在正方形ABCD外取一点E,连接AE,BE,DE.过点A作AE的垂线AP交DE于点P.若AE=AP=1,PB=$\sqrt{6}$,下列结论:
①△APD≌△AEB;②点B到直线AE的距离为$\sqrt{2}$;③EB⊥ED;
④S△APD+S△APB=1+$\sqrt{6}$.⑤S正方形ABCD=4+$\sqrt{6}$.
其中正确结论的序号是①②③.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.化简计算
(1)(x-2y)(x+y);               
(2)(x-1)(2x+1)-2(x-5)(x+2).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.△ABC中其周长为7,AB=3,当BC=1或2时,△ABC为等腰三角形.

查看答案和解析>>

同步练习册答案