分析 ①要求重叠部分△AEF的面积,选择AF作为底,高就等于AB的长;而由折叠可知∠AEF=∠CEF,由平行得∠CEF=∠AFE,代换后,可知AE=AF,进而求出DF的长;
②由AF的长,以及AB的长,可得出△AEF的面积.
解答 解:①设AE=x,由折叠可知,EC=x,BE=8-x,
在Rt△ABE中,AB2+BE2=AE2,即42+(8-x)2=x2,
解得:x=5,
由折叠可知∠AEF=∠CEF,
∵AD∥BC,
∴∠CEF=∠AFE,
∴∠AEF=∠AFE,即AE=AF=5,
故DF=8-5=3(cm);
②由①得:S△AEF=$\frac{1}{2}$×AF×AB=$\frac{1}{2}$×5×4=10(cm2).
点评 本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应角相等.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 20kg | B. | 25kg | C. | 28kg | D. | 30kg |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 等级 | 非常了解 | 比较了解 | 基本了解 | 不太了解 |
| 频数 | 4 | 36 | 120 | 40 |
| 频率 | 0.02 | 0.18 | m | 0.2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com