【题目】如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,交y轴于点E.
(1)求此抛物线的解析式.
(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx(a,b为常数)的图象如图所示,设关于x的一元二次方程ax2+bx+m=1的两个实数根分别为x1,x2,若x1x2>0,则实数m的取值范围是( )
A.0≤m<3B.0<m≤3C.1≤m<4D.1<m≤4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们在探究一元二次方程根与系数的关系中发现:如果关于x的方程x2+px+q=0的两个根是x1,x2,那么由求根公式可推出x1+x2=﹣p,x1x2=q,请根据这一结论,解决下列问题:
(1)若α,p是方程x2﹣3x+1=0的两根,则α+β= ,αβ= ;若2,3是方程x2+mx+n=0的两根,则m= ,n= ;
(2)已知a,b满足a2﹣5a+3=0,b2﹣5b+3=0,求的值;
(3)已知a,b,c满足a+b+c=0,abc=5,求正整数c的最小值,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有这样一个问题:探究函数y=的图象与性质.小美根据学习函数的经验,对函数y=的图象与性质进行了探究下面是小美的探究过程,请补充完整:
(1)函数y=的自变量x的取值范围是 ;
(2)下表是y与x的几组对应值.
x | -2 | - | -1 | - | 1 | 2 | 3 | 4 | … | ||
y | 0 | - | -1 | - | m | … |
求m的值;
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(4)结合函数的图象,写出该函数的一条性质: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在解方程(x2﹣2x)2﹣2(x2﹣2x)-3=0时,设x2﹣2x=y,则原方程可转化为y2﹣2y-3=0,解得y1=-1,y2=3,所以x2﹣2x=-1或x2﹣2x=3,可得x1=x2=1,x3=3,x4=-1.我们把这种解方程的方法叫做换元法.对于方程:x2+﹣3x﹣=12,我们也可以类似用换元法设x+ =y,将原方程转化为一元二次方程,再进一步解得结果,那么换元得到的一元二次方程式是( )
A.y2﹣3y﹣12=0B.y2+y﹣8=0
C.y2﹣3y﹣14=0D.y2﹣3y﹣10=0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,为高,
(1)如图1,当时,求的值;
(2)如图2,点是的中点,过点作交于,求的值;(用含的代数式表示)
(3)在(2)的条件下,若,则 .(直接写出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】国贸商店服装柜在销售中发现:“宝乐牌”童装平均每天可以售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经调查发现:每件童装每降价1元,商场平均每天可多销售2件.
(1)若每件童装降价5元,则商场盈利多少元?
(2)若商场每天要想盈利1200元,请你帮助商场算一算,每件童装应降价多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,点H,E,F分别在边AB,BC,CD上,AE⊥HF于点G.
(1)如图1,求证:AE=HF;
(2)如图2,延长FH,交CB的延长线于M,连接AC,交HF于N.若MB=BE,EC=2BE,求的值;
(3)如图3,若AB=2,BH=DF,将线段HF绕点F顺时针旋转90°至线段MF,连接AM,则线段AM的最小值为 .(直接写出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2+(2k-1)x+k2=0有两个实根x1和x2
(1) 求实数k的取值范围
(2) 若方程两实根x1、x2满足x12-x22=0,求k的值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com