【题目】如图,已知M是平行四边形ABCD中AB边的三等分点,BD与CM交于E,则阴影部分面积与平行四边形面积比为_____.
【答案】7:24
【解析】
利用平行四边形的性质得到AB∥CD,S△BDC=S△ABD,再证明△BME∽△DCE得到,所以,,设BME的面积为S,则S△CDE=9S,S△BCE=3S,从而得到S△BMC=S△DBM=4S,然后计算阴影部分面积与平行四边形面积比.
解:∵四边形ABCD为平行四边形,
∴AB∥CD,S△BDC=S△ABD.
∵M是平行四边形ABCD中AB边的三等分点,
∴CD=AB=3BM.
∵BM∥CD,
∴△BME∽△DCE,
∴
∴,,
设BME的面积为S,则S△CDE=9S,S△BCE=3S,
∴S△BMC=S△DBM=4S,
∴阴影部分面积与平行四边形面积比=(4S+3S):(9S+3S+9S+3S)=7:24.
故答案为:7:24.
科目:初中数学 来源: 题型:
【题目】用适当的方法解下列方程:
(1)(x-1)2﹣9=0;
(2)3(x+5)=(x+5)2;
(3)x2+6x-55=0;
(4)2x(x+3)-1=0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线l的衍生抛物线,直线MN为抛物线l的衍生直线.
(1)如图,抛物线y=x2﹣2x﹣3的衍生抛物线的解析式是 ,衍生直线的解析式是 ;
(2)若一条抛物线的衍生抛物线和衍生直线分别是y=﹣2x2+1和y=﹣2x+1,求这条抛物线的解析式;
(3)如图,设(1)中的抛物线y=x2﹣2x﹣3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,P是直线n上的动点,是否存在点P,使△POM为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=﹣x2+2x+3的顶点为D,它与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.
(1)求顶点D的坐标;
(2)求直线BC的解析式;
(3)求△BCD的面积;
(4)当点P在直线BC上方的抛物线上运动时,△PBC的面积是否存在最大值?若存在,请求出这个最大值,并且写出此时点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).
(1)在图1中作弦EF,使EF∥BC;
(2)在图2中作出圆心O.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数y=﹣与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).
(1)试确定这两个函数的表达式;
(2)求△AOB的面积;
(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.
(1)求证:∠AEB=∠ADC;
(2)连接DE,若∠ADC=105°,求∠BED的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC的平分线交于点D,BD与AC交于点E,与⊙O交于点F.
(1)求∠DAF的度数;
(2)求证:AE2=EFED;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.
(1)求这个抛物线的解析式;
(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?
(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com