【题目】反比例函数,a为常数)和在第一象限内的图象如下左图所示,点M在的图象上,MC⊥x轴于点C,交的图象于点A,MD⊥y轴于点D,交的图象于点B,若,则= _____________.
【答案】
【解析】
根据反比例函数图像与系数k的关系,知S△ODB=1,S△OAC=1,设M(x1,y1)A(x2, y2),由题意知:,则设DB=mk,BM=nk,,故mk y1=2,(m+n)k y2=2,容易得出y1,y2.则能得出S△ABM的面积表示方法. S△AOB=四边形ODMC的面积- S△ODB- S△OAC-S△ABM从而得出S△AOB的表示方法,两者进行比较即可得出最后结果.
根据反比例函数图像与系数k的关系,
知S△ODB=1,S△OAC=1,
设M(x1,y1)A(x2, y2),
由题意知:
则设DB=mk,BM=nk,
mk y1=2,(m+n)k y2=2.
y1=,y2=,
AM= y1- y2=,
S△ABM=,
S△AOB=四边形ODMC的面积- S△ODB- S△OAC-S△ABM,
=-1-1-
=--2
=
=,
=,
=.
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象开口向上,图象经过点(-1,2)和(1,0),且与轴相交于负半轴,下列结论:①;②方程的两根一个大于1,另一个小于-1;③;④.其中正确结论的个数是( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为x米.
(1)用含x的式子表示横向甬道的面积;
(2)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用为239万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃停止加热,水温开始下降,此时水温(℃)与开机后用时()成反比例关系,直至水温降至30℃,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时接通电源,水温(℃)与时间()的关系如图所示:
(1)分别写出水温上升和下降阶段与之间的函数关系式;
(2)怡萱同学想喝高于50℃的水,请问她最多需要等待多长时间?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在中,,,D是BC的中点.
小明对图①进行了如下探究:在线段AD上任取一点P,连接PB.将线段PB绕点P按逆时针方向旋转,点B的对应点是点E,连接BE,得到.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:
(1)当点E在直线AD上时,如图②所示.
① ;②连接CE,直线CE与直线AB的位置关系是 .
(2)请在图③中画出,使点E在直线AD的右侧,连接CE.试判断直线CE与直线AB的位置关系,并说明理由.
(3)当点P在线段AD上运动时,求AE的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如下图,在平面直角坐标系中,直线:+n与y轴交于点A 与反比例函数的图象交于B (-2,-2),直线过B点与x轴交于点C,OA:OC= 4:3.
(1)求m的值以及直线的函数表达式;
(2)连接AC,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如今很多初中生喜欢购头饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此某班数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A.白开水,B.瓶装矿泉水,C.碳酸饮料,D.非碳酸饮料.根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题
(1)这个班级有多少名同学?并补全条形统计图;
(2)若该班同学每人每天只饮用一种饮品(每种仅限一瓶,价格如下表),则该班同学每天用于饮品的人均花费是多少元?
饮品名称 | 白开水 | 瓶装矿泉水 | 碳酸饮料 | 非碳酸饮料 |
平均价格(元/瓶) | 0 | 2 | 3 | 4 |
(3)为了养成良好的生活习惯,班主任决定在饮用白开水的5名班委干部(其中有两位班长记为A,B,其余三位记为C,D,E)中随机抽取2名班委干部作良好习惯监督员,请用列表法或画树状图的方法求出恰好抽到2名班长的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为⊙的直径,,为圆上的两点,,弦,相交于点,
(1)求证:
(2)若,,求⊙的半径;
(3)在(2)的条件下,过点作⊙的切线,交的延长线于点,过点作交⊙于, 两点(点在线段上),求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下面16×8的正方形网格中,每个小正方形的边长为1个单位,△ABC是格点三角形(顶点在网格交点处),请你画出:
(1)△ABC关于点P的位似△A′B′C′,且位似比为1:2;
(2)以A.B.C.D为顶点的所有格点平行四边形ABCD的顶点D
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com