【题目】对于一个函数给出如下定义:对于函数,若当,函数值满足,且满足,则称此函数为“属和合函数”.
例如:正比例函数,当时,,则,求得:,所以函数为“3属和合函数”.
(1)若一次函数为“1属和合函数”,则的值_________;
(2)已知二次函数,当时,是“属和合函数”,则的取值范围_________.
【答案】a=1或a=﹣1
【解析】
(1)分两种情况:利用“k属和合函数”的定义即可得出结论;
(2)分四种情况,各自确定出最大值和最小值,最后利用“k属和合函数”的定义即可得出结论;
解:(1)当a>0时,
∵1≤x≤5,
∴a-1≤y≤5a-1,
∵函数y=ax-1(1≤x≤5)为“1属和合函数”,
∴(5a-1)-(a-1)=5-1,
∴a=1;
当a<0时,(a-1)-(5a-1)=5-1,
∴a=-1,
∴a=1或a=-1;
(2)∵二次函数y=-3x2+6ax+a2+2a的对称轴为直线x=a,
∵当-1≤x≤1时,y是“k属和合函数”,
∴当x=-1时,y=a2-4a-3,
当x=1时,y=a2+8a-3,
当x=a时,y=4a2+2a,
①如图1,当a≤-1时,
当x=-1时,有ymax=a2-4a-3,
当x=1时,有ymin=a2+8a-3
∴(a2-4a-3)-(a2+8a-3)=2k,
∴k=-6a,
∴k≥6;
②如图2,当-1<a≤0时,
当x=a时,有ymax=4a2+2a,
当x=1时,有ymin=a2+8a-3
∴(4a2+2a)-(a2+8a-3)=2k,
∴k=(a-1)2,
∴≤k<6;
③如图3,当0<a≤1时,
当x=a时,有ymax=4a2+2a,
当x=-1时,有ymin=a2-4a-3
∴(4a2+2a)-(a2-4a-3)=2k,
∴k=<k≤6;
④如图4,当a>1时,
当x=1时,有ymax=a2+8a-3,
当x=-1时,有ymin=a2-4a-3
∴(a2+8a-3)-(a2-4a-3)=2k,
∴k=-6a,
∴k>6;
即:k的取值范围为k≥.
科目:初中数学 来源: 题型:
【题目】日照间距系数反映了房屋日照情况.如图①,当前后房屋都朝向正南时,日照间距系数=L:(H﹣H1),其中L为楼间水平距离,H为南侧楼房高度,H1为北侧楼房底层窗台至地面高度.
如图②,山坡EF朝北,EF长为15m,坡度为i=1:0.75,山坡顶部平地EM上有一高为22.5m的楼房AB,底部A到E点的距离为4m.
(1)求山坡EF的水平宽度FH;
(2)欲在AB楼正北侧山脚的平地FN上建一楼房CD,已知该楼底层窗台P处至地面C处的高度为0.9m,要使该楼的日照间距系数不低于1.25,底部C距F处至少多远?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子里装有4个标有1,2,3,4的小球,它们形状、大小完全相同.小明从盒子里随机取出一个小球,记下球上的数字,作为点P的横坐标x,放回然后再随机取出一个小球,记下球上的数字,作为点P的纵坐标y.
(1)画树状图或列表,写出点P所有可能的坐标;
(2)求出点P在以原点为圆心,5为半径的圆上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形OABC的一个顶点O是平面直角坐标系的原点,顶点A,C分别在y轴和x轴上,P为边OC上的一个动点,且PQ⊥BP,PQ=BP,当点P从点C运动到点O时,可知点Q始终在某函数图象上运动,则其函数图象是( )
A.线段B.圆弧
C.双曲线的一部分D.抛物线的一部分
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰中,,.动点在上以每分钟5个单位长度的速度从点出发向点移动,过作交边于点,连结、.设点移动的时间为.
(1)求、两点的坐标;
(2)计算:当面积最大时,的值;
(3)在(2)的条件下,边上是否还存在一个点,使得?若存在,请直接写出点的坐标;若不存在,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(感知)如图①,正方形中,点在边上,平分.若我们分别延长与,交于点,则易证.(不需要证明)
(探究)如图②,在矩形中,点在边的中点,点在边上,平分.求证:.
(应用)在(探究)的条件下,若,,直接写出的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).
(1)求抛物线的函数解析式;
(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;
(3)在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人要某风景区游玩,每天某一时段开往该景区有三辆汽车(票价相同),但是他们不清楚这三辆车的舒适程度,也不知道汽车开来的顺序,两人采用了不同的乘车方案:
甲无论如何总是上开来的第一辆车,而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车辆的舒适状况,如果第二辆车状况比第一辆好,他就上第二辆车,如果第二辆不比第一辆好,他就上第三辆车.这三辆车的舒适程度为上、中、下三等,请解决下面的问题:
(1)请用画树形图或列表的方法分析这三辆车出现的先后顺序,写出所有可能的结果;(用上中下表示)
(2)分析甲、乙两人采用的方案,谁的方案使自己坐上上等车的可能性大,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com