精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EFEBC上,FAC上)折叠,点C与点O恰好重合,则∠OEC=_______.

【答案】108°

【解析】

连接OBOC,根据角平分线的定义求出∠BAO,根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,根据等边对等角可得∠ABO=BAO,再求出∠OBC,然后判断出点OABC的外心,根据三角形外心的性质可得OB=OC,再根据等边对等角求出∠OCB=OBC,根据翻折的性质可得OE=CE,然后根据等边对等角求出∠COE,再利用三角形的内角和定理列式计算即可得解.

如图,连接OBOC.

BAC=54°AO为∠BAC的平分线,

又∵ AB=AC

.

DOAB的垂直平分线,

OA=OB

ABO=BAO=27°

OBC=ABC-ABO=63°-27°=36°.

DOAB的垂直平分线,AO为∠BAC的平分线,

OABC的外心,

OB=OC

OCB=OBC=36°

将∠C沿EFEBC上,FAC上)折叠,点C与点O恰好重合,

OE=CE

COE=OCB=36°.

OCE中,∠OEC=180°-COE-OCB=180°-36°-36°=108°,故答案为:108度.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将一个正方形分割成11个大小不同的正方形,记图中最大正方形的周长是,最小正方形的周长是,则_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABD中,ACBD于点C ,点EAB的中点,tanD2CE1,求sinECB的值和AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,桌上有9张卡片,每张卡片的一面写数字1,另一面写数字-1.每次翻动任意2(包括已翻过的牌)。改变其向上的面,然后计算能看到的所有牌面数字的积请问, 当翻了2019次时牌面数字的积为( )

A.1B.-1C.2019D.-2019

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.

(1)求抛物线y=﹣x2+ax+b的解析式;

(2)当点P是线段BC的中点时,求点P的坐标;

(3)在(2)的条件下,求sin∠OCB的值.

【答案】(1) y=﹣x2+4x﹣3;(2) P的坐标为();(3) .

【解析】分析:(1)将点AB代入抛物线y=-x2+ax+b,解得ab可得解析式;

(2)由C点横坐标为0可得P点横坐标,将P点横坐标代入(1)中抛物线解析式,易得P点坐标;

(3)由P点的坐标可得C点坐标,ABC的坐标,利用勾股定理可得BC长,利用sin∠OCB=可得结果.

详解:(1)将点A、B代入抛物线y=﹣x2+ax+b可得,

解得,a=4,b=﹣3,

∴抛物线的解析式为:y=﹣x2+4x﹣3;

(2)∵点Cy轴上,

所以C点横坐标x=0,

∵点P是线段BC的中点,

∴点P横坐标xP==

∵点P在抛物线y=﹣x2+4x﹣3上,

yP=﹣3=

∴点P的坐标为();

(3)∵点P的坐标为(),点P是线段BC的中点,

∴点C的纵坐标为﹣0=

∴点C的坐标为(0,),

BC==

sinOCB===

点睛:本题主要考查了待定系数法求二次函数解析式,二次函数图像与性质,解直角三角形,勾股定理,利用中点求得点P的坐标是解答此题的关键.

型】解答
束】
24

【题目】如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.

(1)求证:△ACF∽△DAE;

(2)若S△AOC=,求DE的长;

(3)连接EF,求证:EF是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于点E、F.

求证:四边形AFCE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上点A表示数a,点B表示数bab满足|a20|+b+1020O是数轴原点,点Q从点B出发,以每秒3个单位长度的速度沿数轴正方向匀速运动,设运动时间为t秒.

1)点A表示的数为   ,点B表示的数为   

2t为何值时,BQ2AQ

3)若在点Q从点B出发的同时,点P从点O出发,以每秒2个单位长度的速度一直沿数轴正方向匀速运动,而点Q运动到点A时,立即改变运动方向,沿数轴的负方向运动,到达点B时停止运动,在点Q的整个运动过程中,是否存在合适的t值,使得PQ6?若存在,求出所有符合条件的t值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,下列结论:①abc<0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正确的结论有______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABBDCDBD,∠A与∠AEF互补,以下是证明CD//EF的推理过程及理由,请你在横线上补充适当条件,完整其推理过程或理由。

证明:∵ABBDCDBD(已知)

∴∠ABD=CDB=_______________.____________________

∴∠ABD+CDB=180°

AB________________________________

又∠A与∠AEF互补____________________

∴∠A+AEF=_______________________________

AB//_______________________________

CD//EF____________________

查看答案和解析>>

同步练习册答案