精英家教网 > 初中数学 > 题目详情

【题目】如图,平行四边形ABCD的对角线ACBD相交于点O,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AOAB于点MN;②以点O为圆心,以AM长为半径作弧,交OC于点M';③以点M'为圆心,以MN长为半径作弧,在∠COB内部交前面的弧于点N';④过点N'作射线ON'BC于点E.若AB8,则线段OE的长为_______

【答案】4

【解析】

利用作法得到∠COE=OAB,则OE//AB,利用平行四边形的性质判断OE为△A BC的中位线,从而得到OE的长.

解:由作法得∠COE=∠OAB

OEAB

∵四边形ABCD为平行四边形,

OCOA

CEBE

OEABC的中位线,

OEAB×84

故答案为4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】佳佳调査了七年级400名学生到校的方式,根据调查结果绘制出统计图的一部分如图:

1)补全条形统计图;

2)求扇形统计图中表示步行的扇形圆心角的度数;

3)估计在3000名学生中乘公交的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠ABC90°,以AB为直径的⊙OAC于点DEBC的中点,连接DEOE

1)判断DE⊙O的位置关系并说明理由;

2)求证:

3)若tanCDE2,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+8x轴于点A,交y轴于点B,点CAB上,AC5CD∥OACDy轴于点D

1)求点D的坐标;

2)点P从点O出发,以每秒1个单位长度的速度沿OA匀速运动,同时点Q从点A出发,以每秒个单位长度的速度沿AB匀速运动,设点P运动的时间为t秒(0t3),△PCQ的面积为S,求St之间的函数关系式;

3)在(2)的条件下,过点QRQ⊥ABy轴于点R,连接AD,点EAD中点,连接OE,求t为何值时,直线PRx轴相交所成的锐角与∠OED互余.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线yx+cx轴交于点B40),与y轴交于点C,抛物线yx2+bx+c经过点BC,与x轴的另一个交点为点A

1)求抛物线的解析式;

2)点P是直线BC下方的抛物线上一动点,求四边形ACPB的面积最大时点P的坐标;

3)若点M是抛物线上一点,请直接写出使∠MBCABC的点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】模具厂计划生产面积为4,周长为m的矩形模具.对于m的取值范围,小亮已经能用代数的方法解决,现在他又尝试从图形的角度进行探究,过程如下:

1)建立函数模型

设矩形相邻两边的长分别为xy,由矩形的面积为4,得,即;由周长为m,得,即.满足要求的应是两个函数图象在第   象限内交点的坐标.

2)画出函数图象

函数的图象如图所示,而函数的图象可由直线平移得到.请在同一直角坐标系中直接画出直线

3)平移直线,观察函数图象

当直线平移到与函数的图象有唯一交点时,周长m的值为   

在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围.

4)得出结论

若能生产出面积为4的矩形模具,则周长m的取值范围为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD的一个角翻折,使得点D恰好落在BC边上的点G处,折痕为EF,若EB为∠AEG的平分线,EFBC的延长线交于点H.下列结论中:BEF90°;DECHBEEFBEG和△HEG的面积相等;,则.以上命题,正确的有(  )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一个抛物线经过A01),B13),C(﹣11)三点.

1)求这个抛物线的表达式及其顶点D的坐标;

2)联结ABBCCA,求tanABC的值;

3)如果点E在该抛物线的对称轴上,且以点ABCE为顶点的四边形是梯形,直接写出点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】反比例函数与一次函数ykx+1)(其中x为自变量,k为常数)在同一坐标系中的图象可能是(  )

A.B.C.D.

查看答案和解析>>

同步练习册答案