精英家教网 > 初中数学 > 题目详情
4.△ABC为等腰直角三角形,∠ABC=90°,点D在AB边上(不与点A、B重合),以CD为腰作等腰直角△CDE,∠DCE=90°.
(1)如图1,作EF⊥BC于F,求证:△DBC≌△CFE;
(2)在图1中,连接AE交BC于M,求$\frac{AD}{BM}$的值;
(3)如图2,过点E作EH⊥CE交CB的延长线于点H,过点D作DG⊥DC,交AC于点G,连接GH.当点D在边AB上运动时,式子$\frac{HE-GD}{GH}$的值会发生变化吗?若不变,求出该值;若变化请说明理由.

分析 (1)根据等腰直角三角形的性质得到CD=CE,再利用等角的余角相等得到∠DCB=∠CEF,然后根据“AAS”可证明△DBC≌△CFE;
(2)由△DBC≌△CFE得到BD=CF,BC=EF,再利用△ABC为等腰直角三角形得到AB=BC,所以AB=EF,AD=BF,接着证明△ABM≌△EFM,得到BM=FM,所以$\frac{AD}{BM}$=2;
(3)在EH上截取EQ=DG,如图2,先证明△CDG≌△CEQ得到CG=CQ,∠DCG=∠ECQ,由于∠DCG+∠DCB=45°,则∠ECQ+∠DCB=45°,所以∠HCQ=45°,再证明△HCG≌△HCQ,则得到HG=HQ,然后可计算出$\frac{HE-GD}{GH}$=1.

解答 (1)证明:∵△CDE为等腰直角三角形,∠DCE=90°.
∴CD=CE,∠DCB+∠ECF=90°,
∵EF⊥BC,
∴∠ECF+∠CEF=90°,
∴∠DCB=∠CEF,
在△DBC和△CEF中,
$\left\{\begin{array}{l}{∠DBC=∠CFE}\\{∠DCB=∠CEF}\\{CD=EC}\end{array}\right.$,
∴△DBC≌△CFE;
(2)解:如图1,
∵△DBC≌△CFE,
∴BD=CF,BC=EF,
∵△ABC为等腰直角三角形,
∴AB=BC,
∴AB=EF,AD=BF,
在△ABM和△EFM中,
$\left\{\begin{array}{l}{∠AMB=∠EMF}\\{∠ABM=∠EFM}\\{AB=EF}\end{array}\right.$,
∴△ABM≌△EFM,
∴BM=FM,
∴BF=2BM,
∴AD=2BM,
∴$\frac{AD}{BM}$的值为2;
(3)解:$\frac{HE-GD}{GH}$的值不变.
在EH上截取EQ=DG,如图2,
在△CDG和△CEQ中
$\left\{\begin{array}{l}{DG=EQ}\\{∠CDG=∠CEQ}\\{CD=CE}\end{array}\right.$,
∴△CDG≌△CEQ,
∴CG=CQ,∠DCG=∠ECQ,
∵∠DCG+∠DCB=45°,
∴∠ECQ+∠DCB=45°,
而∠DCE=90°,
∴∠HCQ=45°,
∴∠HCQ=∠HCG,
在△HCG和△HCQ中,
$\left\{\begin{array}{l}{HC=HC}\\{∠HCG=∠HCQ}\\{CG=CQ}\end{array}\right.$,
∴△HCG≌△HCQ,
∴HG=HQ,
∴$\frac{HE-GD}{GH}$=$\frac{HQ+QE-GD}{HG}$=$\frac{HG+DG-GD}{HG}$=1.

点评 本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.也考查了等腰直角三角形的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.写出一个公因式为2ab且次数为3的多项式:2ab-4ab2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,在Rt△ABC中,∠B=90°,D、E分别是边AB、AC的中点,DE=4,则△ABC与△ADE的面积比为4:1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.某城市出租汽车收费标准为:4km以内(含4km)收费10元;超出4km的部分,每千米收费1.4元.
(1)写出车费y元与行驶路程x千米之间的函数关系式(x≥4)
(2)某人乘出租汽车行驶了5km,应付多少车费?
(3)若某人付了19.8元车费,那么出租车行驶了多远?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.问题情境:小明在学习中发现:棱长为1cm的正方体的表面展开图面积为6cm2.但是反过来,在面积为6cm2的长方形纸片(如图1,图中小正方形的边长为1cm)上是画不出这个正方体表面展开图的.于是,爱思考的小明就想:要画出这个正方体的表面展开图,最少需要选用多大面积的长方形纸片呢?

问题解决:小明仔细研究正方体的表面展开图的11种不同情形后发现,至少要用用“2×5”和“3×4”两种不同的长方形纸片才能剪得一个正方体的表面展开图.
(1)请你在下面两个网格中分别画出一种;

(2)比较发现:用长方形纸片剪得一个正方体的表面展开图的最大利用率为60%.
拓展延伸:若要在如图3所示的“2×8”和“3×6”的两种规格的长方形纸片上分别剪出两个正方体的表面展开图,请在图中画出裁剪方法.

操作应用:
现有边长20cm的正方形纸片(图4所示),能否用它剪得两个面积最大的正方体表面展开图?若能,请你画出你的设计方案;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑电动车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离y(千米)与经过的时间x(小时)之间的函数关系图象.
(1)求甲从B地返回A地的过程中,y与x之间的函数关系式,并写出自变量x的取值范围;
(2)若乙出发后108分钟和甲相遇,求乙从A地到B地用了多少分钟?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.某公司研发出一种新产品,每件成本50元,该公司决定在某地进行试销售,结果发现每件产品的销售单价x(元)与产品的日销售量y(件)之间存在一定的关系,如下表所示:
x(元)60657075
y (件)40353025
(1)把上表中x,y的各组对应值作为点的坐标,在平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;.
(2)求销售价定为80元时,每日的销售利润.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.随着“新年”临近,儿童礼品开始热销,某厂每月固定生产甲、乙两种礼品共100万件,甲礼品每件成本15元,乙礼品每件成本12元,现甲礼品每件售价22元,乙礼品每件售价18元,且都能全部售出.
(1)若某月甲礼品的产量为x万件,总利润为y万元,写出y关于x的函数关系式.
(2)如果每月投入的总成本不超过1380万元,应怎样安排甲、乙礼品的产量,可使所获得的利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.在平面直角坐标系中有线段AB和点A′,已知A点的坐标为(-2,1),B点的坐标为(-3,-2),A′点的坐标为(1,2),分别按下列要求完成各题.

(1)如图1,平移线段AB,使点A移到点A′的位置,请在图中作出平移后的线段A′B′,并直接写出B′点的坐标为(0,-1);
(2)如图2,线段AB与A′B′关于某条直线l对称,请用尺规作图的方法在图中画出对称轴l(保留作图痕迹),并直接写出对称轴l的解析式为y=-3x;
(3)如图3,线段AB绕图中某点P顺时针方向旋转90°,点A恰好旋转到点A′的位置,请在图中画出点P的位置,并画出点B的对应点B′,直接写出:P点的坐标为(0,0),在旋转过程中线段AB扫过的面积为2π.

查看答案和解析>>

同步练习册答案