【题目】(1)如图1,矩形中,点、分别在线段、上,点与点关于对称,点在线段上,连接、、交于点.求证:四边形是菱形;
(2)如图2,矩形中,,点、分别在线段、上,点与点关于对称,点在线段上,,求的长;
(3)如图3,有一块矩形空地,,,点是一个休息站且在线段上,,点在线段上,现要在点关于对称的点处修建一口水井,并且修建水渠和,以便于在四边形空地上种植花草,余下部分贴上地砖.种植花草的四边形空地的面积是否存在最小值,若存在,请求出最小值,若不存在,请说明理由.
【答案】(1)见解析;(2);(3)3000.
【解析】
(1)先证,证明四边形是平行四边形,再根据即可证明是菱形;
(2)连接,设,在Rt△APE中,根据勾股定理解出x即可;
(3)先表示出四边形的面积得到最小时,四边形的面积最小,当点,,在同一条线上时,最小,再证,根据相似比求出EG,从而求出面积的最小值.
解:(1)证明:由对称可知:,
在矩形中,,
∴,
在 △POE和△QOB中,
∴,
∴,
∵,
∴四边形是平行四边形,
∵点与点关于对称,
∴,
∴四边形是菱形;
(2)连接,由对称知,,
设,
∴,
在Rt△APE中,根据勾股定理得,即,
∴解得:,
∴;
(3)连接,在中,,,
∴,
连接,过点作于,
∴四边形
,
∴最小时,四边形的面积最小,
对称可知,,
∴点是以点为圆心,为半径的一段弧上的一点,
∴点,,在同一条线上时,最小,
∴,,
∴,
∴,即,
∴,
∴最小,
∴四边形的面积最小值S.
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax+bx+c图象的一部分,其对称轴为x=-1,且过点(-3,0).下列说法:①abc<0;②3a+c=0;③4a+2b+c<0;④若(-5,y1),(,y2)是抛物线上两点,则y1> y2.其中说法正确的是( )
A.①②B.②③C.①②④D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数与轴交于、两点(点在点左),与轴交于点,连接,点为二次函数图象上的动点.
(1)若的面积为3,求抛物线的解析式;
(2)在(1)的条件下,若在轴上存在点,使得,求点的坐标;
(3)若为对称轴右侧抛物线上的动点,直线交轴于点,直线交轴于点,判断的值是否为定值,若是,求出定值,若不是请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中国飞人苏炳添以6秒47获得2019年国际田联伯明翰室内赛男子60米冠军,苏炳添夺冠掀起跑步热潮某校为了解该校八年级男生的短跑水平,全校八年级男生中随机抽取了部分男生,对他们的短跑水平进行测试,并将测试成绩(满分10分)绘制成如下不完整的统计图表:
组别 | 成绩/分 | 人数/人 |
A | 5 | 36 |
B | 6 | 32 |
C | 7 | 15 |
D | 8 | 8 |
E | 9 | 5 |
F | 10 | m |
请你根据统计图表中的信息,解答下列问题:
(1)填空:m=_____,n=_____;
(2)所抽取的八年级男生短跑成绩的众数是_____分,扇形统计图中E组的扇形圆心角的度数为____°;
(3)求所抽取的八年级男生短跑的平均成绩.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数的图象与反比例函数的图象交于点,与轴交于点,若,且.
(1)求反比例函数与一次函数的表达式;
(2)若点为x轴上一点,是等腰三角形,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点,点,点.
(1)画出关于轴的对称图形,并写出点的对称点的坐标;
(2)若点在轴上,连接、,则的最小值是 ;
(3)若直线轴,与线段、分别交于点、(点不与点重合),若将沿直线翻折,点的对称点为点,当点落在的内部(包含边界)时,点的横坐标的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校组织数学兴趣探究活动,爱思考的小实同学在探究两条直线的位置关系查阅资料时发现,两条中线互相垂直的三角形称为“中垂三角形”.如图1、图2、图3中,AF、BE是△ABC的中线,AF⊥BE于点P,像△ABC这样的三角形均称为“中垂三角形”.
(1)如图1,当∠PAB=45°,AB=6时,AC= ,BC= ;如图2,当sin∠PAB=,AB=4时,AC= ,BC= ;
(2)请你观察(1)中的计算结果,猜想AB2、BC2、AC2三者之间的关系,用等式表示出来,并利用图3证明你的结论.
(3)如图4,在△ABC中,AB=4,BC=2,D、E、F分别是边AB、AC、BC的中点,连结DE并延长至G,使得GE=DE,连结BG,当BG⊥AC于点M时,求GF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学九年级男生共250人,现随机抽取了部分九年级男生进行引体向上测试,相关数据的统计图如下.设学生引体向上测试成绩为x(单位:个).学校规定:当0≤x<2时成绩等级为不及格,当2≤x<4时成绩等级为及格,当4≤x<6时成绩等级为良好,当x≥6时成绩等级为优秀.样本中引体向上成绩优秀的人数占30%,成绩为1个和2个的人数相同.
(1)补全统计图;
(2)估计全校九年级男生引体向上测试不及格的人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com