【题目】中国飞人苏炳添以6秒47获得2019年国际田联伯明翰室内赛男子60米冠军,苏炳添夺冠掀起跑步热潮某校为了解该校八年级男生的短跑水平,全校八年级男生中随机抽取了部分男生,对他们的短跑水平进行测试,并将测试成绩(满分10分)绘制成如下不完整的统计图表:
组别 | 成绩/分 | 人数/人 |
A | 5 | 36 |
B | 6 | 32 |
C | 7 | 15 |
D | 8 | 8 |
E | 9 | 5 |
F | 10 | m |
请你根据统计图表中的信息,解答下列问题:
(1)填空:m=_____,n=_____;
(2)所抽取的八年级男生短跑成绩的众数是_____分,扇形统计图中E组的扇形圆心角的度数为____°;
(3)求所抽取的八年级男生短跑的平均成绩.
【答案】(1)4,15(2)5,18(3)6.26
【解析】
(1)根据B组32人占总人数的32%求得总人数即可求得m,然后求得C组所占的百分比即可求得n的值;
(2)利用众数的定义求得众数即可;求得E组所占的百分比即可求得所在扇形的圆心角的度数;
(3)利用加权平均数的求法直接计算即可.
解:(1)∵B组的有32人,占32%,
∴被调查的人数为32÷32%=100人,
∴m=100﹣36﹣32﹣15﹣8﹣5=4,
15÷100=15%,
∴n=15,
故答案为4,15;
(2)成绩为5分的有36人,最多,
所以众数为5分;
5÷100×360°=18°,
∴扇形统计图中E组的扇形圆心角的度数为18°,
故答案为5,18;
(3)所抽取的八年级男生短跑的平均成绩为:=6.26(分).
科目:初中数学 来源: 题型:
【题目】数学活动课上,小明和小红要测量小河对岸大树BC的高度,小红在点A测得大树顶端B的仰角为45°,小明从A点出发沿斜坡走3米到达斜坡上点D,在此处测得树顶端点B的仰角为31°,且斜坡AF的坡比为1:2.
(1)求小明从点A到点D的过程中,他上升的高度;
(2)依据他们测量的数据能否求出大树BC的高度?若能,请计算;若不能,请说明理由.(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC 中,AB=AC,点 M 在 BA 的延长线上,点 N 在 BC 的延长线上,过点 C 作CD∥AB 交∠CAM 的平分线于点 D.
(1)如图 1,求证:四边形 ABCD 是平行四边形;
(2)如图 2,当∠ABC=60°时,连接 BD,过点 D 作 DE⊥BD,交 BN 于点 E,在不添加任何辅助线的情况下,请直接写出图 2 中四个三角形(不包含△CDE),使写出的每个三角形的面积与△CDE 的面积相等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB为⊙O的直径,C为⊙O上异于A、B的一点,过C点的切线与BA的延长线交于D点,E为CD上一点,连接EA并延长交⊙O于H,F为EH上一点,且EF=CE,CF交延长线交⊙O于G.
(1)求证:弧AG=弧GH;
(2)若E为DC的中点,sim∠CDO=,AH=2,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,、是上的两个点,点在上,且是直角三角形,的半径为1.
①请在图1中画出点的位置;
②当时, ;
(2)如图2,的半径为5,、为外固定两点(、、三点不在同一直线上),且,为上的一个动点(点不在直线上),以和为邻边作平行四边形,求最小值并确定此时点的位置;
(3)如图3,、是上的两个点,过点作射线,交于点,若,,点是平面内的一个动点,且,为的中点,在点的运动过程中,求线段长度的最大值与最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,矩形中,点、分别在线段、上,点与点关于对称,点在线段上,连接、、交于点.求证:四边形是菱形;
(2)如图2,矩形中,,点、分别在线段、上,点与点关于对称,点在线段上,,求的长;
(3)如图3,有一块矩形空地,,,点是一个休息站且在线段上,,点在线段上,现要在点关于对称的点处修建一口水井,并且修建水渠和,以便于在四边形空地上种植花草,余下部分贴上地砖.种植花草的四边形空地的面积是否存在最小值,若存在,请求出最小值,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,具体过程如下:
收集数据
从八、九两个年级各随机抽取20名学生进行体质健康测试,测试成绩(百分制)如下:
八年级 | 78 | 86 | 74 | 81 | 75 | 76 | 87 | 70 | 75 | 90 |
75 | 79 | 81 | 70 | 74 | 80 | 86 | 69 | 83 | 77 | |
九年级 | 93 | 73 | 88 | 81 | 72 | 81 | 94 | 83 | 77 | 83 |
80 | 81 | 70 | 81 | 73 | 78 | 82 | 80 | 70 | 40 |
整理、描述数据
将成绩按如下分段整理、描述这两组样本数据:
成绩(x) | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
八年级人数 | 0 | 0 | 1 | 11 | 7 | 1 |
九年级人数 | 1 | 0 | 0 | 7 | 10 | 2 |
(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)
分析数据
两组样本数据的平均数、中位数、众数、方差如表所示:
年级 | 平均数 | 中位数 | 众数 | 方差 |
八年级 | 78.3 | 77.5 | 75 | 33.6 |
九年级 | 78 | 80.5 | a | 52.1 |
(1)表格中a的值为______;
(2)请你估计该校九年级体质健康优秀的学生人数为多少?
(3)根据以上信息,你认为哪个年级学生的体质健康情况更好一些?请说明理由.(请从两个不同的角度说明推断的合理性)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是“作以已知线段为斜边的等腰直角三角形”的尺规作图过程.
已知:线段.
求作:以为斜边的一个等腰直角三角形.
作法:如图,
(1)分别以点和点为圆心,大于的长为半径作弧,两弧相交于,两点;
(2)作直线,交于点;
(3)以为圆心,的长为半径作圆,交直线于点;
(4)连接,.
则即为所求作的三角形.
请回答:在上面的作图过程中,①是直角三角形的依据是________;②是等腰三角形的依据是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com