【题目】如图,是直线上一点,为任一射线,平分,平分,
(1)分别写出图中与的补角;
(2)与有怎样的数量关系,请说明理由.
【答案】(1)∠AOF的补角是∠BOF和∠EOF;∠BOG的补角是∠AOG和∠EOG.
(2)与互余,理由见解析.
【解析】
(1)根据角平分线定义得出∠FOB=∠EOF,∠AOG=∠EOG,根据补角定义和邻补角定义求出即可.
(2)根据角平分线定义得出∠EOF=∠BOE,∠GOE=∠AOE,根据∠AOE+∠BOE =180°,根据余角的定义得出即可.
解:(1)∵平分,
∴∠FOB=∠EOF,
∵∠AOF+∠FOB=180°,
∴∠AOF的补角是∠BOF和∠EOF;
∵平分,
∴∠AOG=∠EOG,
∵∠BOG+∠AOG=180°,
∴∠BOG的补角是∠AOG和∠EOG.
(2)与互余,
理由是:∵平分,平分,
∴∠EOF =,∠EOG=
∴∠EOF+∠EOG=(+)
∵ +=180°,
∴∠EOF+∠EOG==90°,
∴与互余.
科目:初中数学 来源: 题型:
【题目】小明用四根竹棒扎成如图所示的风筝框架,已知AB=CD,AD=CB,下列判断不正确的是( )
A. ∠A=∠CB. ∠ABC=∠CDA
C. ∠ABD=∠CDBD. ∠ABC=∠C
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(操作发现)如图1,在边长为x的正方形内剪去边长为y的小正方形,剩下的图形面积可以表示为 ;把剩下的这个图形沿图2的虚线剪开,并拼成图3的长方形,可得长为 、宽为 ,那么这个长方形的面积可以表示为 ,不同的方法求得的面积应相等,由此可以得到一个等式.
(数学应用)利用得到的等式解决以下问题:
(1)
(2)
(思维拓展)(3)利用得到的等式计算…
解:原式=…
请你把接下来的计算过程补充完整.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(﹣6,0),D(﹣7,3),点B、C在第二象限内.
(1)求点B的坐标。
(2)将正方形ABCD以每秒1个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;
(3)在(2)的情况下,问是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AB是⊙O的直径,⊙O过AC的中点D,DE⊥BC,交BC于点E.
(1)求证:DE是⊙O的切线;
(2)如果CD=8,CE=6,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:
如图,在平面直角坐标系xOy中,点A与点B的坐标分别是,.
对于坐标平面内的一点P,给出如下定义:如果,则称点P为线段AB的“等角点”显然,线段AB的“等角点”有无数个,且A、B、P三点共圆.
设A、B、P三点所在圆的圆心为C,直接写出点C的坐标和的半径;
轴正半轴上是否有线段AB的“等角点”?如果有,求出“等角点”的坐标;如果没有,请说明理由;
当点P在y轴正半轴上运动时,是否有最大值?如果有,说明此时最大的理由,并求出点P的坐标;如果没有请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,二次函数y=ax2+bx﹣3的图象与x轴交于A(﹣1,0),点B(4,0),与y轴的交点为C
(1)求二次函数的关系式;
(2)已知点M是线段OB上一动点,过点M作平行于y轴的直线l,直线l与抛物线交于点E,与直线BC交于点F,连接CE,若△CEF与△OBC相似,求点M的坐标;
(3)已知点M是x轴正半轴上一动点,过点M作平行于y轴的直线l,直线l与抛物线交于P,与直线BC交于点Q,连接CP,将△CPQ沿CP翻折后,是否存在这样的直线l,使得翻折后的点Q刚好落在y轴上?若存在,请求出此时点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某淘宝网店销售台灯,每个台灯售价为60元,每星期可卖出300个,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30个.已知该款台灯每个成本为40元,
(1)若每个台灯降x元(),则每星期能卖出 个台灯,每个台灯的利润是 元.
(2)在顾客得实惠的前提下,该淘宝网店还想获得6480元的利润,应将每件的售价定为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=的图象如图,点O为坐标原点,点A在y轴的正半轴上,点B、C在二次函数y=的图象上,四边形OBAC为菱形,且∠OBA=120°,则菱形OBAC的面积为___________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com