【题目】如图,在平面直角坐标系xOy中,抛物线与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=2,点A的坐标为(1,0).
(1)求该抛物线的表达式及顶点坐标;
(2)点P为抛物线上一点(不与点A重合),联结PC.当∠PCB=∠ACB时,求点P的坐标;
(3)在(2)的条件下,将抛物线沿平行于轴的方向向下平移,平移后的抛物线的顶点为点D,点P关于x轴的对应点为点Q,当OD⊥DQ时,求抛物线平移的距离.
【答案】(1)(2,-1)(2)P(,).(3).
【解析】
(1)用待定系数法即可求得抛物线的表达式,利用顶点公式即可求得抛物线的顶点坐标;
(2)过点P作PN⊥x轴,过点C作CM⊥PN,交NP的延长线于点M,由点B、C的坐标得为等腰直角三角形,利用等量代换证得∠OCA=∠PCM,利用这对角的正切函数得到MC=3PM,设PM=a,则MC=3a,PN=3-a,得P(3a,3-a)代入抛物线的表达式,即可求得答案;
(3)设D的坐标为(2,),过点D作直线EF∥x轴,交y轴于点E,交PQ的延长线于点F,利用∠OED=∠QFD=∠ODQ=90°,证得∠EOD=∠QDF,再根据其正切函数列出等式即可求得答案.
(1)∵A的坐标为(1,0),对称轴为直线x=2,∴点B的坐标为(3,0)
将A(1,0)、B(3,0)代入,得
解得:
所以,.
当x=2时,
∴顶点坐标为(2,-1) .
(2)过点P作PN⊥x轴,垂足为点N.过点C作CM⊥PN,交NP的延长线于点M.
∵∠CON=90°,∴四边形CONM为矩形.
∴∠CMN=90°,CO= MN.
∵,∴点C的坐标为(0,3)
∵B(3,0),
∴OB=OC.
∵∠COB=90°,
∴∠OCB=∠BCM = 45°,
又∵∠ACB=∠PCB,
∴∠OCB-∠ACB =∠BCM -∠PCB,即∠OCA=∠PCM.
∴tan∠OCA= tan∠PCM.
∴.
设PM=a,则MC=3a,PN=3-a.
∴P(3a,3-a).
将P(3a,3-a)代入,得
.
解得,(舍).∴P(,).
(3)设抛物线平移的距离为m.得,
∴D的坐标为(2,).
过点D作直线EF∥x轴,交y轴于点E,交PQ的延长线于点F.
∵∠OED=∠QFD=∠ODQ=90°,
∴∠EOD+∠ODE = 90°,∠ODE+∠QDF = 90°,
∴∠EOD=∠QDF,
∴tan∠EOD = tan∠QDF.
∴.
∴.
解得.
所以,抛物线平移的距离为.
科目:初中数学 来源: 题型:
【题目】如图,已知正比例函数图象经过点A(2,2),B(m,3)
(1)求正比例函数的解析式及m的值;
(2)分别过点A与点B作y轴的平行线,与反比例函数在第一象限的分支分别交于点C、D(点C、D均在点A、B下方),若BD=4AC,求反比例函数的解析式;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙P与y轴相切于点C(0,3),与x轴相交于点A(1,0),B(9,0).直线y=kx-3恰好平分⊙P的面积,那么k的值是 ( )
A.
B.
C.
D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C2018,若点P(4035,m)在第2018段抛物线C2018上,则m的值是( )
A.1B.-1C.0D.4035
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:各类方程的解法
求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.
用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.
(1)问题:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;
(2)拓展:用“转化”思想求方程的解;
(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB是⊙O的直径,C,D是⊙O上AB同侧两点,∠BAC=26°.
(Ⅰ)如图1,若OD⊥AB,求∠ABC和∠ODC的大小;
(Ⅱ)如图2,过点C作⊙O的切线,交AB的延长线于点E,若OD∥EC,求∠ACD的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级数学兴趣小组为了测得该校地下停车场的限高CD,在课外活动时间测得下列数据:如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米,地面B点(与E点在同一个水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)2米.试求该校地下停车场的高度AC及限高CD(结果精确到0.1米,≈1.732).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D是以点A为圆心2为半径的圆上一点,连接BD,M为BD的中点,则线段CM长度的最小值为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com