精英家教网 > 初中数学 > 题目详情

【题目】2019年暑假期间,某学校计划租用8辆客车送280名师生参加社会实践活动,现有甲、乙两种客车,它们的载客量和租金如表,设租用甲种客车x辆,租车总费用为w元.

甲种客车

乙种客车

载客量(人/辆)

30

40

租金(元/辆)

270

320

1)求出w(元)与x(辆)之间函数关系式,并直接写出自变量x的取值范围;

2)选择怎样的租车方案所需的费用最低?最低费用多少元?

【答案】(1)x为整数);(2)租用甲种客车4辆,租用乙种客车4辆,所需的费用最低,为2360元.

【解析】

(1)根据题意租金×客车数量=租车总费用列出方程即可,根据车辆不能超过计划数量8且要满足载客总数大于等于280人列出不等式求解即可;

2)根据(1)中得出的表达式判断wx的增大而减小,再根据自变量x的取值范围取最大值求解即可.

解:(1)设租用甲种客车x辆,则租用乙种客车辆,

由题意可得出

由题意可知:

解得x为整数

∴自变量x的取值范围为:x为整数;

2)∵x的系数

wx的增大而减小,

∴当x取最大值时即时,w的值最小,

其最小值为元,

∴租用甲种客车4辆,租用乙种客车4辆,所需的费用最低,为2360元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,的顶点坐标分别为A(23)B (11)C(21)

(1)画出关于轴对称的,并写出点的坐标为_________

(2)向左平移4个单位长度得到,直接写出点的坐标为_________

(3)直接写出点B关于直线n(直线n上各点的纵坐标都为-1)对称点B'的坐标为________

(4)轴上找一点P,使PA+PB的值最小,标出P点的位置(保留画图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点CE分别在直线ABDF上,小华想知道∠ACE和∠DEC是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF,再找出CF的中点O,然后连结EO并延长EO和直线AB相交于点B,经过测量,他发现EOBO,因此他得出结论:∠ACE和∠DEC互补,而且他还发现BCEF.小华的想法对吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为杨辉三角”.

根据杨辉三角请计算(a+b)10的展开式中第三项的系数为(  )

A. 2018 B. 2017 C. 55 D. 45

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(阅读理解)

课外兴趣小组活动时,老师提出了如下问题:

如图1,△ABC中,若AB8AC6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DEAD,请根据小明的方法思考:

(1)由已知和作图能得到△ADC≌△EDB的理由是_____.

A.SSS B.SAS C.AAS D.HL

(2)求得AD的取值范围是______.

A.6AD8 B.6≤AD≤8 C.1AD7 D.1≤AD≤7

(感悟)

解题时,条件中若出现中点”“中线字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.

(问题解决)

(3)如图2AD是△ABC的中线,BEACE,交ADF,且AEEF.求证:ACBF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点DAB边的中点,过点D作边AB的垂线lEl上任意一点,且AC=5BC=8,则△AEC的周长最小值为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长度为1个单位长度的小正方形组成的正方形网格中,点ABC在小正方形的顶点上.

1)在图中画出与△ABC关于直线l成轴对称的△ABC′;

2)在直线l上找一点P,使PB′+PC的长最短;

3)若△ACM是以AC为腰的等腰三角形,点M在小正方形的顶点上.这样的点M共有   个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,完成任务:

自相似图形

定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.

任务:

(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为   

(2)如图2,已知ABC中,ACB=90°,AC=4,BC=3,小明发现ABC也是“自相似图形”,他的思路是:过点C作CDAB于点D,则CD将ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则ACD与ABC的相似比为   

(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).

请从下列A、B两题中任选一条作答:我选择   题.

A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=   (用含b的式子表示);

如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=   (用含n,b的式子表示);

B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含b的式子表示);

如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含m,n,b的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,EBC的中点,连接AE并延长交DC的延长线于点F.

(1)求证:AB=CF;

(2)连接DE,若AD=2AB,求证:DEAF.

查看答案和解析>>

同步练习册答案