精英家教网 > 初中数学 > 题目详情

【题目】解下列方程.

(1)(x2)240

(2)x24x3960

(3)2x223x

(4)2(2x3)3x(2x3)

【答案】(1)x2±2(2)x22x=﹣18(3)x2x(4)xx.

【解析】

1)利用直接开平方法解方程即可.

(2)利用配方法解方程即可.

(3)利用因式分解--十字相乘法解方程即可.

(4)利用因式分解法解方程即可.

(1) 利用直接开平方法解方程

(x2)240

x2=±2

x2±2

(2)利用配方法解方程

x24x3960

x24x+4400

(x2)2400

x2=±20

x22x=﹣18

(3)利用因式分解--十字相乘法解方程

2x223x

2x23x20

(x2)(2x+1)0

x2x

(4)利用因式分解法解方程

2(2x3)3x(2x3)

2(2x3)3x(2x3)0

(2x3)(23x)0

xx

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点ABO是单位为1的正方形网格上的三个格点,⊙O的半径为OA,点P是优弧的中点,则PAB的距离为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CEABCD的边AB的垂直平分线,垂足为点OCEDA的延长线交于点E.连接ACBEDODOAC交于点F,则下列结论:

四边形ACBE是菱形;

②∠ACD=∠BAE

AFBE23

S四边形AFOESCOD23

其中正确的结论有_____.(填写所有正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的盒子中装有4张卡片.4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.

(1)从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是:

(2)先从盒子中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率(请用画树状图或列表等方法求解).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC的外接圆,AB为直径,∠BAC的平分线交于点D,过点D作DEAC分别交AC、AB的延长线于点E、F.

(1)求证:EF是的切线;

(2)若AC=4,CE=2,求的长度.(结果保留

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形OABC,以点O为坐标原点建立平面直角坐标系,其中A(2,0),C(0,3),点P以每秒1个单位的速度从点C出发在射线CO上运动,连接BP,作BEPBx轴于点E,连接PEAB于点F,设运动时间为t秒.

(1)t=2时,求点E的坐标;

(2)AB平分∠EBP时,求t的值.

(3)在运动的过程中,是否存在以P、O、E为顶点的三角形与△ABE相似.若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.

(1)如图1,已知折痕与边BC交于点O,连接APOPOA.若OCPPDA的面积比为1:4,求边CD的长.

(2)如图2,在(1)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M与点PA不重合),动点N在线段AB的延长线上,且BN=PM,连接MNPB于点F,作MEBP于点E.试问当动点MN在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系系中,一次函数与反比例函数的图象交于第二、第四象限两点,过点轴,垂足为,且点的坐标为

(1)求一次函数与反比例函数的表达式;

(2)将一次函数向下移动个单位的函数记为,当时,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知是一次函数的图象和反比例函数的图象的两个交点.

1)求反比例函数和一次函数的解析式;

2)求的面积;

查看答案和解析>>

同步练习册答案