精英家教网 > 初中数学 > 题目详情

【题目】已知,如图,在ABCA'B'C'中,ADA'D'分别是ABCA'B'C'的中线,ABA'B'BCB'C'ADA'D'.求证:ABC≌△A'B'C'

【答案】见解析.

【解析】

依据BDB'D'ABA'B'ADA'D',即可判定ABD≌△A'B'D',再根据∠B=∠B'ABA'B'BCB'C',即可得判定ABC≌△A'B'C'

ADA'D'分别是ABCA'B'C'的中线,BCB'C'

BDB'D'

又∵ABA'B'ADA'D'

∴△ABD≌△A'B'D'SSS),

∴∠B=∠B'

又∵ABA'B'BCB'C'

∴△ABC≌△A'B'C'SAS).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,反比例函数y (x>0)的图象与边长是6的正方形OABC的两边ABBC分别相交于MN 两点,△OMN的面积为10.若动点Px轴上,则PMPN的最小值是(  )

A. 6 B. 10 C. 2 D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB3EAD的中点,FCD上一点,且DF2CF,沿BE将△ABE翻折,如果点A恰好落在BF上,则AD_

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线yx4与抛物线y+bx+c交于坐标轴上两点AC,抛物线与x轴另一交点为点B

1)求抛物线解析式;

2)若动点D在直线AC下方的抛物线上;

作直线BD,交线段AC于点E,交y轴于点F,连接AD;求△ADE与△CEF面积差的最大值,及此时点D的坐标;

如图2,作DM⊥直线AC,垂足为点M,是否存在点D,使△CDM中某个角恰好是∠ACO的一半?若存在,直接写出点D的横坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.

(1)求这个二次函数的解析式;

(2)在这条抛物线的对称轴右边的图象上有一点B,使AOB的面积等于6,求点B的坐标;

(3)对于(2)中的点B,在此抛物线上是否存在点P,使POB=90°?若存在,求出点P的坐标,并求出POB的面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点EBC上一点,BFAEDC于点F,若AB5BE2,则AF____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数yax2+bx+cx轴相交于点A(﹣10)和B30),与y轴交于点C,连接ACBC,且∠ACB90°

1)求二次函数的解析式;

2)如图(1),若NAC的中点,MBC上一点,且满足CM2BM,连AMBN相交于点E,求点M的坐标和EMB的面积;

3)如图(2),将AOC沿直线BC平移得到AOC,再将AOC沿AC翻折得到AOC,连接AOAC,请问AOC能否构成等腰三角形?若能,请求出所有符合条件的点C的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).

(1)求抛物线的函数解析式;

(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;

(3)在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知ABCD四点的坐标依次为(00),(62),(88),(26),若一次函数ymx6m+2m0)图象将四边形ABCD的面积分成13两部分,则m的值为(  )

A. 4B. ,﹣5C. D. ,﹣4

查看答案和解析>>

同步练习册答案