【题目】在△ABC中,∠ACB=90°,AC=BC,直线MN经过C,且AD⊥MN于D,BE⊥MN于E.
(1)当直线MN绕点C旋转到图1的位置时,求证:△ADC≌△CEB
(2)当直线MN绕点C旋转到图2的位置时,写出线段DE、AD和BE的数量关系,并说明理由.
(3)当直线MN绕点C旋转到图3的位置时,直接写出DE、AD和BE的数量关系(不用说明理由)
【答案】(1)见解析;(2)见解析;(3)见解析.
【解析】
(1)由已知推出∠ADC=∠BEC=90°,因为∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,推出∠DAC=∠BCE,根据AAS即可得到答案;
(2)结论:DE=AD-BE.与(1)证法类似可证出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,即可求解.
(3)结论:DE=BE-AD.证明方法同上.
(1)证明:如图1,
∵AD⊥DE,BE⊥DE,
∴∠ADC=∠BEC=90°,
∵∠ACB=90°,
∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,
∴∠DAC=∠BCE,
在△ADC和△CEB中,
,
∴△ADC≌△CEB(AAS).
(2)解:结论:DE=AD-BE.
理由:如图2,∵BE⊥EC,AD⊥CE,
∴∠ADC=∠BEC=90°,
∴∠EBC+∠ECB=90°,
∵∠ACB=90°,
∴∠ECB+∠ACE=90°,
∴∠ACD=∠EBC,
在△ADC和△CEB中,
,
∴△ADC≌△CEB(AAS),
∴AD=CE,CD=BE,
∴DE=EC-CD=AD-BE.
(3)解:结论:DE=BE-AD.
理由如下:如图3,∵∠ACB=90°,
∴∠ACD+∠BCE=90°
∵AD⊥MN,BE⊥MN,
∴∠ADC=∠CED=90°,
∴∠ACD+∠DAC=90°,
∴∠DAC=∠ECB,
在△ACD和△CBE中,
,
∴△ACD≌△CBE(AAS),
∴AD=CE,CD=BE,
∴DE=CD-CE=BE-AD.
科目:初中数学 来源: 题型:
【题目】某商家到梧州市一茶厂购买茶叶,购买茶叶数量为x千克(x>0),总费用为y元,现有两种购买方式.
方式一:若商家赞助厂家建设费11500元,则所购茶叶价格为130元/千克;(总费用=赞助厂家建设费+购买茶叶费)
方式二:总费用y(元)与购买茶叶数量x(千克)满足下列关系式:y= .
请回答下面问题:
(1)写出购买方式一的y与x的函数关系式;
(2)如果购买茶叶超过150千克,说明选择哪种方式购买更省钱;
(3)甲商家采用方式一购买,乙商家采用方式二购买,两商家共购买茶叶400千克,总费用共计74600元,求乙商家购买茶叶多少千克?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若二次函数和的图象关于原点成中心对称,我们就称其中一个函数是另一个函数的中心对称函数,也称函数和互为中心对称函数.
求函数的中心对称函数;
如图,在平面直角坐标系xOy中,E,F两点的坐标分别为,,二次函数的图象经过点E和原点O,顶点为已知函数和互为中心对称函数;
请在图中作出二次函数的顶点作图工具不限,并画出函数的大致图象;
当四边形EPFQ是矩形时,请求出a的值;
已知二次函数和互为中心对称函数,且的图象经过的顶点当时,求代数式的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是把图1放入长方形内得到的,,AB=3,AC=4,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(3分)如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知直线EF//GH,且EF和GH之间的距离为1,小明同学制作了一个直角三角形硬纸板ACB,其中∠ACB=90°,∠BAC=60°,AC=1.小明利用这块三角板进行了如下的操作探究:
(1)如图1,若点C在直线EF上,且∠ACE=20°,求∠1的度数;
(2)若点A在直线EF上,点C在EF和GH之间(不含EF、GH上),边BC、AB与直线GH分别交于点D和点K.
①如图2,∠AKD、∠CDK的平分线交于点O.在△ABC绕着点A旋转的过程中,∠O的度数是否变化?若不变,求出∠O的度数:若变化,请说明理由;
②如图3,在△ABC绕着点A旋转的过程中,设∠EAK=n°,∠CDK=(4m-3n-10)°,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,△ABC中,∠ACB=90°,AC=BC,点D为BC边上的一点.
(1)以点C为旋转中心,将△ACD逆时针旋转90°,得到△BCE,请你画出旋转后的图形;
(2)延长AD交BE于点F,求证:AF⊥BE;
(3)若AC=,BF=1,连接CF,则CF的长度为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角坐标系中,点 A( 2,2)、B(0,1)点 P 在 x 轴上,且△PAB 的等腰三角形,则满足条件的点 P 共有()个
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC的直角顶点C置于直线l上,AC=BC,现过A.B两点分别作直线l的垂线,垂足分别为点D.E.
(1)求证:△ACD≌△CBE.
(2)若BE=3,DE=5,求AD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com