【题目】一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.
(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;
(2)求支柱的长度;
(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.
【答案】(1)y=x2+6;(2)5.5米;(3)能并排行驶这样的三辆汽车.
【解析】
(1)根据题目可知A,B,C的坐标,设出抛物线的解析式代入可求解.
(2)设F点的坐标为(5,yF)可求出支柱MN的长度.
(3)设DN是隔离带的宽,NG是三辆车的宽度和.做GH垂直AB交抛物线于H则可求解.
解:(1)根据题目条件,A、B、C的坐标分别是(-10,0)、(10,0)、(0,6).
设抛物线的解析式为y=ax2+c,
将B、C的坐标代入y=ax2+c,得
解得a=,c=6.
所以抛物线的表达式是y=x2+6.
(2)可设,于是,
从而支柱EF的长度是10-4.5=5.5米.
(3)设DN是隔离带的宽,NG是三辆车的宽度和,则G点坐标是.
过G点作GH垂直AB交抛物线于H,则.
根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.
科目:初中数学 来源: 题型:
【题目】如图,直线y=k1x+b与双曲线相交于A(1,2),B(m,-1)两点.
(1)求直线和双曲线的表达式;
(2)求直线AB与x轴的交点C的坐标及ΔAOB的面积;
(3)观察图像,请直接写出使不等式k1x+b>成立的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市销售一种成本为40元千克的商品,若按50元千克销售,一个月可售出500千克,现打算涨价销售,据市场调查,涨价x元时,月销售量为m千克,m是x的一次函数,部分数据如下表:
观察表中数据,直接写出m与x的函数关系式:_______________:当涨价5元时,计算可得月销售利润是___________元;
当售价定多少元时,会获得月销售最大利润,求出最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+3(a≠0)过A(4,4),B(2,m)两点,点B到抛物线对称轴的距离记为d,满足0<d≤1,则实数m的取值范围是( )
A. m≤2或m≥3 B. m≤3或m≥4 C. 2<m<3 D. 3<m<4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=90°,AC=6,BC=8,以点C为圆心,CA的长为半径的圆与AB、BC分别相交于点D、F,求圆心到AB的距离及AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+3过A(﹣3,0),B(1,0)两点,交y轴于点C.
(1)求该抛物线的表达式.
(2)设P是该抛物线上的动点,当△PAB的面积等于△ABC的面积时,求P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知矩形ABCD的一条边AD=8,E是BC边上的一点,将矩形ABCD沿折痕AE折叠,使得顶点B落在CD边上的点P处,PC=4(如图1).
(1)求AB的长;
(2)擦去折痕AE,连结PB,设M是线段PA的一个动点(点M与点P、A不重合).N是AB沿长线上的一个动点,并且满足PM=BN.过点M作MH⊥PB,垂足为H,连结MN交PB于点F(如图2).
①若M是PA的中点,求MH的长;
②试问当点M、N在移动过程中,线段FH的长度是否发生变化?若变化,说明理由;若不变,求出线段FH的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com