17£®ÔĶÁÓëÖ¤Ã÷£º
Èçͼ£¬ÒÑÖªÕý·½ÐÎABCDÖУ¬E¡¢F·Ö±ðÊÇCD¡¢BCÉϵĵ㣬ÇÒ¡ÏEAF=45¡ã£¬
ÇóÖ¤£ºBF+DE=EF£®
·ÖÎö£ºÖ¤Ã÷Ò»ÌõÏ߶εÈÓÚÁíÁ½ÌõÏ߶εĺͣ¬³£Ó᰽س¤·¨¡±»ò¡°²¹¶Ì·¨¡±£¬½«Ïß¶ÎBF¡¢DE·ÅÔÚͬһֱÏßÉÏ£¬¹¹Ôì³öÒ»ÌõÓëBF+DEÏàµÈµÄÏ߶Σ®Èçͼ1ÑÓ³¤EDÖÁµãF¡ä£¬Ê¹DF¡ä=BF£¬Á¬½ÓA F¡ä£¬Ò×Ö¤¡÷ABF¡Õ¡÷ADF¡ä£¬½øÒ»²½Ö¤Ã÷¡÷AEF¡Õ¡÷AEF¡ä£¬¼´¿ÉµÃ½áÂÛ£®
£¨1£©ÇëÄ㽫ÏÂÃæµÄÖ¤Ã÷¹ý³Ì²¹³äÍêÕû£®
Ö¤Ã÷£ºÑÓ³¤EDÖÁF¡ä£¬Ê¹DF¡ä=BF£®
Ó¦ÓÃÓëÍØÕ¹£º
½¨Á¢ÈçÍ¼Æ½ÃæÖ±½Ç×ø±êϵ£¬Ê¹¶¥µãAÓë×ø±êÔ­µãOÖØºÏ£¬±ßOB¡¢OD·Ö±ðÔÚxÖá¡¢yÖáÕý°ëÖáÉÏ£®
£¨2£©ÉèÕý·½Ðα߳¤OBΪ30£¬µ±EΪCDÖеãʱ£¬ÊÔÎÊFΪBCµÄ¼¸µÈ·Öµã£¿²¢Çó´ËʱFµãµÄ×ø±ê£»
£¨3£©ÉèÕý·½Ðα߳¤OBΪ30£¬µ±EF×î¶Ìʱ£¬ÇóÖ±ÏßEFµÄ½âÎöʽ£®

·ÖÎö £¨1£©ÑÓ³¤EDF¡ä£¬Ê¹DF¡ä=BF£¬ÓÉABCDΪÕý·½ÐΣ¬¸ù¾ÝÕý·½ÐεÄËÄÌõ±ßÏàµÈµÃµ½AB=AD£¬¡ÏABF=¡ÏADF¡ä=90¡ã£¬ÀûÓÃSAS¿ÉµÃ³öÈý½ÇÐÎABFÓëÈý½ÇÐÎADF¡äÈ«µÈ£¬¸ù¾ÝÈ«µÈÈý½ÇÐεÄÐÔÖʵõ½AF=AF¡ä£¬¡ÏBAF=¡ÏDAF¡ä£¬ÓÉ¡ÏEAFΪ45¡ã£¬µÃµ½¡ÏDAE+¡ÏFAB=45¡ã£¬µÈÁ¿´ú»»¿ÉµÃ³ö¡ÏEAF¡ä=45¡ã£¬È»ºóÀûÓÃSASµÃµ½Èý½ÇÐÎAEFÓëÈý½ÇÐÎAEF¡ä£¬ÀûÓÃÈ«µÈÈý½ÇÐεĶÔÓ¦±ßÏàµÈµÃµ½EF=EF¡ä£¬¶øEF¡ä=ED+DF¡ä£¬ÔÙ½«DF¡ä»»ÎªBF¼´¿ÉµÃÖ¤£»
£¨2£©ÉèBF=a£¬ÓÉCB-FB±íʾ³öCF£¬ÓÉEF=ED+FB±íʾ³öEF£¬ÔÚÖ±½ÇÈý½ÇÐÎCEFÖУ¬ÀûÓù´¹É¶¨ÀíÁгö¹ØÓÚaµÄ·½³Ì£¬Çó³ö·½³ÌµÄ½âµÃµ½aµÄֵΪ10£¬¿ÉµÃ³öFΪBCµÄÈýµÈ·Öµã£»
£¨3£©µ±CE=CFʱ£¬EF×î¶Ì£¬´Ëʱ¡÷CEFΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬ÓÉÌâÒâÉè³öF£¨30£¬b£©£¬¼´FB=b£¬ÓÉCB-FB±íʾ³öCF£¬¼´ÎªCE£¬ÓÉEF=BF+DE=2BF=2b£¬ÔÚÖ±½ÇÈý½ÇÐÎCEFÖУ¬Óɱíʾ³öµÄCFÓëCEÀûÓù´¹É¶¨Àí±íʾ³öEF£¬¿ÉÁгö¹ØÓÚbµÄ·½³Ì£¬Çó³ö·½³ÌµÄ½âµÃµ½bµÄÖµ£¬È·¶¨³öEÓëFµÄ×ø±ê£¬ÉèÖ±ÏßEFµÄ½âÎöʽΪy=kx+b£¬½«EºÍFµÄ×ø±ê´úÈëµÃµ½¹ØÓÚkÓëbµÄ¶þÔªÒ»´Î·½³Ì×飬Çó³ö·½³Ì×éµÄ½âµÃµ½kÓëbµÄÖµ£¬½ø¶øÈ·¶¨³öÖ±ÏßEFµÄ½âÎöʽ£®

½â´ð ½â£º£¨1£©Èçͼ1£ºÑÓ³¤EDÖÁF¡ä£¬Ê¹DF¡ä=BF£®

¡ßËıßÐÎABCDÊÇÕý·½ÐΣ¬
¡àAB=AD£¬¡ÏABF=¡ÏADF¡ä=90¡ã£¬
¡à¡÷ABF¡Õ¡÷ADF¡¯£¨SAS£©£¬
¡àAF=AF¡ä£¬¡ÏBAF=¡ÏDAF¡ä£¬
¡ß¡ÏF¡äAE=¡ÏF¡äAD+¡ÏDAE=¡ÏBAF+¡ÏDAE=¡ÏDAB-¡ÏEAF=45¡ã£¬
ÓÖ¡ß¡ÏEAF=45¡ã£¬
¡à¡ÏF¡äAE=¡ÏEAF£®
¡ßÔÚ¡÷AEFºÍ¡÷AEF¡äÖУ¬$\left\{\begin{array}{l}{AF=AF¡ä}\\{¡ÏEAF=¡ÏEAF¡ä}\\{AE=AE}\end{array}\right.$£¬
¡à¡÷AEF¡Õ¡÷AEF¡ä£¨SAS£©£®
¡àEF=EF¡ä=ED+DF¡ä=ED+BF£»
£¨2£©ÉèBF=a£¬ÔòCF=30-a£¬EF=ED+FB=15+a£®
¡ßÔÚRt¡÷CEFÖУ¬¸ù¾Ý¹´¹É¶¨ÀíµÃ£ºEC2+CF2=EF2£¬
¡à152+£¨30-a£©2=£¨15+a£©2£¬
¡àa=10£¬
¡àFΪBCµÄÈýµÈ·Öµã£¬
¡àF£¨30£¬10£©£»
£¨3£©µ±CE=CFʱ£¬EF×î¶Ì£¬´Ëʱ¡÷CEFΪµÈÑüÖ±½ÇÈý½ÇÐΣ®
ÉèF×ø±êΪ£¨30£¬b£©£¬¿ÉµÃFB=b£¬ÔòCF=CE=BC-FB=30-b£¬
¡àEF=$\sqrt{2}$£¨30-b£©£®
ÓÖ¡ßEF=FB+DE£¬
¡à$\sqrt{2}$£¨30-b£©=2b£¬½âµÃ£ºb=$\frac{30\sqrt{2}}{2+\sqrt{2}}$=30$\sqrt{2}$-30£®
¡àFB=DE=30$\sqrt{2}$-30£®
¡àE£¨30$\sqrt{2}$-30£¬30£©£¬F£¨30£¬30$\sqrt{2}$-30£©£®
ÉèÖ±ÏßEFµÄ½âÎöʽΪy=kx+b£®
¡ß½«EºÍFµÄ×ø±ê´úÈëµÃ£º$\left\{\begin{array}{l}{£¨30\sqrt{2}-30£©k+b=30}\\{30k+b=30\sqrt{2}-30}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{k=-1}\\{b=30\sqrt{2}}\end{array}\right.$£¬
¡àÖ±ÏßEFµÄ½âÎöʽΪy=-x+30$\sqrt{2}$£®

µãÆÀ ´ËÌ⿼²éÁËÒ»´Îº¯Êý×ÛºÏÌâ£¬Éæ¼°µÄ֪ʶÓУºÈ«µÈÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬×ø±êÓëͼÐÎÐÔÖÊ£¬ÀûÓôý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽ£¬Õý·½ÐεÄÐÔÖÊ£¬µÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖÊ£¬ÒÔ¼°¹´¹É¶¨Àí£¬ÀûÓÃÁËת»¯µÄÊýѧ˼Ï룬ÆäÖиù¾ÝÌâÒâµÃµ½µ±CE=CFʱ£¬EF×î¶ÌÊǽâµÚÈýÎʵĹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®-2017µÄÏà·´ÊýÊÇ£¨¡¡¡¡£©
A£®-2017B£®2017C£®-$\frac{1}{2017}$D£®$\frac{1}{2017}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖª£¬ÔÚ¾ØÐÎABCDÖУ¬EΪBC±ßÉÏÒ»µã£¬AE¡ÍDE£¬AB=12£¬BE=16£¬FΪÏß¶ÎBEÉÏÒ»µã£¬EF=7£¬Á¬½ÓAF£®Èçͼ¢Ù£¬ÏÖÓÐÒ»ÕÅÓ²ÖÊֽƬ¡÷GMN£¬¡ÏNGM=90¡ã£¬NG=6£¬MG=8£¬Ð±±ßMNÓë±ßBCÔÚͬһֱÏßÉÏ£¬µãNÓëµãEÖØºÏ£¬µãGÔÚÏß¶ÎDEÉÏ£®Èçͼ¢Ú£¬¡÷GMN´Óͼ¢ÙµÄλÖóö·¢£¬ÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÑØEBÏòµãBÔÈËÙÒÆ¶¯£¬Í¬Ê±£¬µãP´ÓAµã³ö·¢£¬ÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÑØADÏòµãDÔÈËÙÒÆ¶¯£¬µãQΪֱÏßGNÓëÏß¶ÎAEµÄ½»µã£¬Á¬½ÓPQ£®µ±µãNµ½´ïÖÕµãBʱ£¬¡÷GMNºÍµãPͬʱֹͣÔ˶¯£®ÉèÔ˶¯Ê±¼äΪtÃ룬½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÔÚÕû¸öÔ˶¯¹ý³ÌÖУ¬µ±µãGÔÚÏß¶ÎAEÉÏʱ£¬ÇótµÄÖµ£®
£¨2£©ÔÚÕû¸öÔ˶¯¹ý³ÌÖУ¬ÊÇ·ñ´æÔÚµãP£¬Ê¹¡÷APQÊǵÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³ötµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨3£©ÔÚÕû¸öÔ˶¯¹ý³ÌÖУ¬Éè¡÷GMNÓë¡÷AEFÖØµþ²¿·ÖµÄÃæ»ýΪS£¬ÇëÖ±½Óд³öSÓëtÖ®¼äµÄº¯Êý¹ØÏµÊ½ÒÔ¼°×Ô±äÁ¿tµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èçͼ£¨1£©Ëùʾ£¬EΪ¾ØÐÎABCDµÄ±ßADÉÏÒ»µã£¬¶¯µãP¡¢Qͬʱ´ÓµãB³ö·¢£¬µãPÑØÕÛÏßBE-ED-DCÔ˶¯µ½µãCʱֹͣ£¬µãQÑØBCÔ˶¯µ½µãCʱֹͣ£¬ËüÃÇÔ˶¯µÄËٶȶ¼ÊÇ1cm/Ã룬ÉèP¡¢Qͬʱ³ö·¢tÃëʱ£¬¡÷BPQµÄÃæ»ýΪycm2£¬ÒÑÖªyÓëtµÄº¯Êý¹ØÏµÍ¼ÏóÈçͼ£¨2£©£¬µ±t=$\frac{29}{4}$Ãëʱ£¬¡÷ABEÓë¡÷BQPÏàËÆ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®½â²»µÈʽ×飺
£¨1£©$\left\{\begin{array}{l}{\frac{1}{2}x-1£¼x}\\{2x-4£¾3x+3}\end{array}\right.$
£¨2£©$\left\{\begin{array}{l}{\frac{x}{2}-\frac{x}{3}£¾-1}\\{2£¨x-3£©-3£¨x-2£©£¾-6}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏBAC=90¡ã£¬¡ÏB=30¡ã£¬AC=5cm£¬AD¡ÍBCÓÚD£¬ÔòBD=£¨¡¡¡¡£©
A£®10cmB£®7.5cmC£®8.5cmD£®6.5cm

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Ì½¾¿Ì⣺
£¨1£©Èçͼ1£¬ÈôAB¡ÎCD£¬Ôò¡ÏB+¡ÏD=¡ÏE£¬ÄãÄÜ˵Ã÷ÀíÓÉÂð£¿
£¨2£©Èô½«µãEÒÆÖÁͼ2µÄλÖ㬴Ëʱ¡ÏB£¬¡ÏD£¬¡ÏEÖ®¼äÓÐʲô¹ØÏµ£¿
£¨3£©Èô½«µãEÒÆÖÁͼ3µÄλÖ㬴Ëʱ¡ÏB£¬¡ÏD£¬¡ÏEÖ®¼äµÄ¹ØÏµÓÖÈçºÎ£¿
£¨4£©ÔÚͼ4ÖУ¬AB¡ÎCD£¬¡ÏE+¡ÏGÓë¡ÏB+¡ÏF+¡ÏDÖ®¼äÓкιØÏµ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êÖУ¬¡÷AOBµÄÈý¸ö¶¥µãµÄ×ø±ê·Ö±ðÊÇA£¨4£¬4£©£¬O£¨0£¬0£©£¬B£¨6£¬0£©£¬µãMÊÇÉäÏßOBÉϵÄÒ»¶¯µã£¬¹ýµãM×÷MN¡ÎAB£¬MNÓëÉäÏßOA½»ÓÚµãN£¬PÊÇAB±ßÉϵÄÈÎÒâµã£¬Á¬½ÓAM£¬PM£¬PN£¬BN£¬Éè¡÷PMNµÄÃæ»ýΪS£®
£¨1£©µãMµÄ×ø±êΪ£¨2£¬0£©Ê±£¬ÇóµãNµÄ×ø±ê£®
£¨2£©µ±MÔÚ±ßOBÉÏʱ£¬SÓÐ×î´óÖµÂð£¿ÈôÓУ¬Çó³öSµÄ×î´óÖµ£»ÈôûÓУ¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÊÇ·ñ´æÔÚµãM£¬Ê¹¡÷PMNºÍ¡÷ANBÖУ¬ÆäÖÐÒ»¸öÃæ»ýÊÇÁíÒ»¸ö2±¶£¿Èç¹û´æÔÚ£¬Çó³öµãMµÄ×ø±ê£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Íê³ÉÏÂÁи÷Ìâ
£¨1£©$\frac{2\sqrt{12}+\sqrt{3}}{\sqrt{3}}$+£¨1-$\sqrt{3}$£©0
£¨2£©½â·½³Ì×é$\left\{\begin{array}{l}{2x-y=5}\\{3x-2y=8}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸