分析 (1)如图1,易求得∠B=60°,∠BED=90°,BD=2,然后运用三角函数的定义就可求出BE的值;
(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,易证△MBD≌△NCD,则有BM=CN,DM=DN,进而可证到△EMD≌△FND,则有EM=FN,就可得到BE+CF=BM+EM+CF=BM+FN+CF=BM+CN=2BM=2BD×cos60°=BD=$\frac{1}{2}$BC=$\frac{1}{2}$AB;
(3)过点D作DM⊥AB于M,如图3.同(1)可得:∠B=∠ACD=60°,同(2)可得:BM=CN,DM=DN,EM=FN.由DN=FN可得DM=DN=FN=EM,从而可得BE+CF=BM+EM+CF=CN+DM+CF=NF+DM=2DM=2BD×sin60°=$\frac{\sqrt{3}}{2}$BC=$\frac{\sqrt{3}}{2}$AB,因为BE+CF=BE+NF-CN=BE+DM-BM=BE+$\frac{\sqrt{3}}{2}$BD-$\frac{1}{2}$BD=$\frac{\sqrt{3}}{2}$AB,把AB=4,BD=2代入即可得到BE+$\sqrt{3}$-1=2$\sqrt{3}$,从而求得BE=$\sqrt{3}$+1.
解答 解:(1)如图1,![]()
∵AB=AC,∠A=60°,
∴△ABC是等边三角形,
∴∠B=∠C=60°,BC=AC=AB=4.
∵点D是线段BC的中点,
∴BD=DC=$\frac{1}{2}$BC=2.
∵DF⊥AC,即∠AFD=90°,
∴∠AED=360°-60°-90°-120°=90°,
∴∠BED=90°,
∴BE=BD×cos∠B=2×cos60°=2×$\frac{1}{2}$=1;
(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,
则有∠AMD=∠BMD=∠AND=∠CND=90°.![]()
∵∠A=60°,∴∠MDN=360°-60°-90°-90°=120°.
∵∠EDF=120°,∴∠MDE=∠NDF.
在△MBD和△NCD中,
$\left\{\begin{array}{l}{∠BMD=∠CND}\\{∠B=∠C}\\{BD=CD}\end{array}\right.$,
∴△MBD≌△NCD,
∴BM=CN,DM=DN.
在△EMD和△FND中,
$\left\{\begin{array}{l}{∠EMD=∠FND}\\{DM=DN}\\{∠MDE=∠NDF}\end{array}\right.$,
∴△EMD≌△FND,
∴EM=FN,
∴BE+CF=BM+EM+CF=BM+FN+CF=BM+CN
=2BM=2BD×cos60°=BD=$\frac{1}{2}$BC=$\frac{1}{2}$AB;
(3)过点D作DM⊥AB于M,如图3.
同(1)可得:∠B=∠ACD=60°.![]()
同(2)可得:BM=CN,DM=DN,EM=FN.
∵DN=FN,
∴DM=DN=FN=EM,
∴BE+CF=BM+EM+CF=CN+DM+CF=NF+DM=2DM=2BD×sin60°=$\frac{\sqrt{3}}{2}$BC=$\frac{\sqrt{3}}{2}$AB,
∴(2)中的结论不成立;
∵AB=4,
∴BD=2,
∵BE+CF=BE+NF-CN=BE+DM-BM=BE+$\frac{\sqrt{3}}{2}$BD-$\frac{1}{2}$BD=$\frac{\sqrt{3}}{2}$AB,
∴BE+$\sqrt{3}$-1=2$\sqrt{3}$,
∴BE=$\sqrt{3}$+1.
点评 本题主要考查了等边三角形的判定与性质、四边形的内角和定理、全等三角形的判定与性质、三角函数的定义、特殊角的三角函数值等知识,通过证明三角形全等得到BM=CN,DM=DN,EM=FN是解决本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com