精英家教网 > 初中数学 > 题目详情

【题目】解下列不等式,并把解集在数轴上表示出来:

(1)2(x1)43x 21

【答案】(1)x2 23

【解析】

1)根据去括号、移项、合并同类项和系数化为1即可求出不等式的解集,然后在数轴上表示出解集即可;
2)根据去分母、去括号、移项、合并同类项和系数化为1即可求出不等式的解集,然后在数轴上表示出解集即可.

(1)2(x1)43x

解:去括号:2x243x

移项:2x3x2-4

合并同类项:-x<-2

系数化为1x2

将解集表示在数轴上,

综上所述,不等式的解集是x2.

(2)1

解:去分母:6

去括号:6

移项:6+3

合并同类项:9

系数化为13

将解集表示在数轴上,

综上所述,不等式的解集是3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,锐角ABC的两条高BDCE相交于点O,且OBOC,连接AO

1)求证:∠ABC=∠ACB

2)求证:AO垂直平分线段BC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:

①abc<0;②>0;③ac﹣b+1=0;④OAOB=﹣

其中正确结论的个数是( )

A.4 B.3 C.2 D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,ABC在正方形网格中,若点A的坐标为(03),按要求回答下列问题:

1)在图中建立正确的平面直角坐标系;

2)直接写出ABC的面积;

3)画出一个ACD,使得ADCD,并写出点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在四边形ABCD中,AD//BC,对角线ACBD交于点O,且AC=BD,下列四个命题中真命题是(

A. AB=CD,则四边形ABCD一定是等腰梯形;

B. ∠DBC=∠ACB,则四边形ABCD一定是等腰梯形;

C. ,则四边形ABCD一定是矩形;

D. AC⊥BDAO=OD,则四边形ABCD一定是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在直角坐标平面内,抛物线y=ax2+bx﹣3与y轴交于点A,与x轴分别交于点B(﹣1,0)、点C(3,0),点D是抛物线的顶点.

(1)求抛物线的表达式及顶点D的坐标;

(2)联结AD、DC,求△ACD的面积;

(3)点P在直线DC上,联结OP,若以O、P、C为顶点的三角形与△ABC相似,求点P的坐

标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=kx+bx轴于点A,交y轴于点B,直线y=2x4x轴于点D,与直线AB相交于点C32).

1)根据图象,写出关于x的不等式2x4kx+b的解集;

2)若点A的坐标为(50),求直线AB的解析式;

3)在(2)的条件下,求四边形BODC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=kx+与抛物线y= 交于点A(﹣2,0)与点D,直线y=kx+y轴交于点C.

(1)求kb的值及点D的坐标;

(2)过D点作DEy轴于点E,点P是抛物线上AD间的一个动点,过P点作PMCE交线段ADM点,问是否存在P点使得四边形PMEC为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线经过点A0),B0),且与y轴相交于点C

1求这条抛物线的表达式

2)求∠ACB的度数;

3设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DEAC,当DCEAOC相似时,求点D的坐标.

查看答案和解析>>

同步练习册答案