【题目】如图,O是等边△ABC内一点,OA=6,OB=8,OC=10,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO',下列结论:①△BO'A可以由△BOC绕点B逆时针旋转60°得到;②点O与O'的距离为8;③四边形AOBO'的面积为24+15; ④∠AOB=150°;⑤s△AOC+S△AOB=9+24,其中正确的结论是_____.
【答案】①②④⑤.
【解析】
①证明△BO′A≌△BOC即可说明△BO'A可以由△BOC绕点B逆时针旋转60°得到;
②根据旋转的性质可知△BOO′是等边三角形,则点O与O'的距离为8,②正确;
③利用:四边形AOBO'的面积=等边△BOO′面积+Rt△AOO′面积,进行计算即可判断;
④∠AOB=∠AOO′+∠BOO′=90°+60°=150°,④正确;
⑤模仿原图的旋转方法,将线段,AO以点A为旋转中心顺时针旋转60°得到线段AO',连接OO′,根据△AOC面积+△AOB面积=四边形AO′BO面积=△AOO′面积+△BOO′即可判断.
在△BO′A和△BOC中,BO’=BO,∠O’BA=∠OBA,BA=BC
∴△BO′A≌△BOC(SAS).
∴O′A=OC.
∴△BO'A可以由△BOC绕点B逆时针旋转60°得到,①正确;
如图1,连接OO′,根据旋转的性质可知△BOO′是等边三角形,
∴点O与O'的距离为8,②正确;
在△AOO′中,AO=6,OO′=8,AO′=10,
∴△AOO′是直角三角形,∠AOO′=90°.
∴Rt△AOO′面积为×6×8=24,
又等边△BOO′面积为×8×4=16,
∴四边形AOBO'的面积为24+16,③错误;
∠AOB=∠AOO′+∠BOO′=90°+60°=150°,④正确;
如图2,将线段,AO以点A为旋转中心顺时针旋转60°得到线段AO',连接OO′,
则△AO′B≌△AOC(SAS),
△BOO′是直角三角形,∠BOO′=90°,
△AOO′是等边三角形,
所以△AOC面积+△AOB面积=四边形AO′BO面积=△AOO′面积+△BOO′=9+24,⑤正确.
故答案为①②④⑤.
科目:初中数学 来源: 题型:
【题目】已知抛物线.
(1)求证:该抛物线与x轴总有交点;
(2)若该抛物线与x轴有一个交点的横坐标大于3且小于5,求m的取值范围;
(3)设抛物线与轴交于点M,若抛物线与x轴的一个交点关于直线的对称点恰好是点M,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在ABCD中,E、F分别是AD、BC上的点,将平行四边形ABCD沿EF所在直线翻折,使点B与点D重合,且点A落在点A′处.
(1)求证:△A′ED≌△CFD;
(2)连结BE,若∠EBF=60°,EF=3,求四边形BFDE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两端抛物线组合而成的封闭图形,不妨简称为“锅线”,锅口直径为,锅深,锅盖高(锅口直径与锅盖直径视为相同),建立直角坐标系如图①所示(图②是备用图),如果把锅纵断面的抛物线记为,把锅盖纵断面的抛物线记为.
求和的解析式;
如果炒菜锅时的水位高度是,求此时水面的直径;
如果将一个底面直径为,高度为的圆柱形器皿放入炒菜锅内蒸食物,锅盖能否正常盖上?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,过点A(﹣6,0)的直线l1与直线l2:y=2x相交于点B(m,6)
(1)求直线l1的表达式
(2)直线l1与y轴交于点M,求△BOM的面积;
(3)过动点P(m,0)且垂于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D下方时,写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】红星公司生产的某种时令商品每件成本为20元,经过市场调查发现,这种商品在未来40天内的日销售量y1(件)与时间t(天)的关系如图所示;未来40天内,每天的价格y2(元/件)与时间t(天)的函数关系式为:y2=(t为整数);
(1)求日销售量y1(件)与时间t(天)的函数关系式;
(2)请预测未来40天中哪一天的销售利润最大,最大日销售利润是多少?
(3)在实际销售的前20天中该公司决定销售一件商品就捐赠a元(a为定值)利润给希望工程.公司通过销售记录发现,前20天中,第18天的时候,扣除捐赠后日销售利润为这20天中的最大值,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某数学社团成员想利用所学的知识测量某广告牌的宽度图中线段MN的长,直线MN垂直于地面,垂足为点在地面A处测得点M的仰角为、点N的仰角为,在B处测得点M的仰角为,米,且A、B、P三点在一直线上请根据以上数据求广告牌的宽MN的长.
参考数据:,,,,,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=-3x+c与x轴相交于点A(1,0),与y轴相交于点B,抛物线y=-x2+bx+c经过点A,B,与x轴的另一个交点是C.
(1)求抛物线的解析式;
(2)点P是对称轴的左侧抛物线上的一点,当S△PAB=2S△AOB时,求点P的坐标;
(3)连接BC,抛物线上是否存在点M,使∠MCB=∠ABO?若存在,请直接写出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,抛物线y= 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
(1)求直线AC的解析式;
(2)如图2,点E(a,b)是对称轴右侧抛物线上一点,过点E垂直于y轴的直线与AC交于点D(m,n).点P是x轴上的一点,点Q是该抛物线对称轴上的一点,当a+m最大时,求点E的坐标,并直接写出EQ+PQ+PB的最小值;
(3)如图3,在(2)的条件下,连结OD,将△AOD沿x轴翻折得到△AOM,再将△AOM沿射线CB的方向以每秒3个单位的速度沿平移,记平移后的△AOM为△A′O'M',同时抛物线以每秒1个单位的速度沿x轴正方向平移,点B的对应点为B'.△A'B'M'能否为等腰三角形?若能,请求出所有符合条件的点M'的坐标;若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com