【题目】如图,在平面直角坐标系中,矩形OABC的顶点O是坐标原点,OA、OC分别在x轴、y轴的正半轴上,且OA=5,OC=4.
(1)如图①,将矩形沿对角线OB折叠,使得点A落在点D处,OD与CB相交于点E,请问重叠部分△OBE是什么三角形?说明你的理由:并求出这个三角形的面积;
(2)如图②,点E、F分别是OC、OA边上的点,将△OEF沿EF折叠,使得点O正好落在BC边上的D点,过点D作DH⊥OA,交EF于点G,交OA于点H,若CD=2,求点G的坐标;
(3)如图③,照(2)中条件,当点E、F在OC、OA上移动时,点D也在边BC上随之移动,请直接写出BD的取值范围.
【答案】(1)是等腰三角形,理由见解析;;(2);(3)1≤BD≤3
【解析】
(1)根据折叠的性质和矩形的性质,得出,,进而得到是等腰三角形,再利用勾股定理求出EB的长,进而求面积即可;
(2)易得点G的横坐标为2,根据折叠的性质和DH⊥OA,得出,再在中利用勾股定理求出DG的长即可得到点G的纵坐标;
(3)分两种情况考虑:①当点E运动到与点C重合时;②当点F运动到与点A重合时,分别求出BD的值,即可得到BD的取值范围.
(1)是等腰三角形,理由如下:
如下图,
图形折叠
矩形
即
是等腰三角形
设,则
在中,
求得
(2)如下图,
∵图形折叠
,是等腰三角形
设,则
在中
,求得
即
(3)①当点E运动到与点C重合时,如下图:
此时,CD=OC=4,则BD=BC-CD=1;
②当点F运动到与点A重合时,如下图:
此时,AD=OA=5,在Rt△ABD中,BD===3,
∴BD的取值范围为1≤BD≤3.
科目:初中数学 来源: 题型:
【题目】某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.
(1)求甲、乙两种树苗每棵的价格各是多少元?
(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】大数学家欧拉非常推崇观察能力,他说过,今天已知的许多数的性质,大部分是通过观察发现的,历史上许多大家,都是天才的观察家,化归就是将面临的新问题转化为已经熟悉的规范问题的数学方法,这是一种具有普遍适用性的数学思想方法.如多项式除以多项式可以类比于多位数的除法进行计算:
请用以上方法解决下列问题:
(1)计算:(x3+2x2﹣3x﹣10)÷(x﹣2);
(2)若关于x的多项式2x4+5x3+ax2+b能被二项式x+2整除,且a,b均为自然数,求满足以上条件的a,b的值及相应的商.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:二次函数y=x2+2x+3与一次函数y=3x+5.
(1)两个函数图象相交吗?若相交,有几个交点?
(2)将直线y=3x+5向下平移k个单位,使直线与抛物线只有一个交点,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:
运动项目 | 频数(人数) |
羽毛球 | 30 |
篮球 | |
乒乓球 | 36 |
排球 | |
足球 | 12 |
请根据以上图表信息解答下列问题:
(1)频数分布表中的 , ;
(2)在扇形统计图中,“排球”所在的扇形的圆心角为 度;
(3)全校有多少名学生选择参加乒乓球运动?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=x+4.如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B.C两点,顶点D在正方形内部.
(1)写出点M(2,3)任意两条特征线___________________
(2)若点D有一条特征线是y=x+1,求此抛物线的解析式________________________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,连接BE,分别以B、E为圆心,以大于的长为半径作弧,两弧交于点M、N,若直线MN恰好过点C,则AB的长度为( )
A.B.C.D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市从不同学校随机抽取100名初中生对“使用数学教辅用书的册数”进行调查,统计结果如下:
册数 | 0 | 1 | 2 | 3 |
人数 | 10 | 20 | 30 | 40 |
关于这组数据,下列说法正确的是( )
A.众数是2册B.中位数是2册
C.平均数是3册D.方差是1.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:
(1)接受问卷调查的学生共有______人,条形统计图中m的值为______;
(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;
(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;
(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com