【题目】再读教材:宽与长的比是(约为0.618)的矩形叫作黄金矩形.黄金矩形给我们以协调、匀称的美感,世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计.下面,我们用宽为2的矩形纸片折叠黄金矩形(提示:).
第一步:在矩形纸片一端 ,利用图1的方法折出一个正方形,然后把纸片展平;
第二步:如图2,把这个正方形折成两个相等的矩形,再把纸片展平;
图1 图2
第三步:折出内侧矩形的对角线,并把折到图3中所示的处;
第四步:展平纸片,按照所得的点折出,使,则图4中就会出现黄金矩形.
图3 图4
(1)在图3中_________ (保留根号);
(2)如图3,则四边形的形状是_________;
(3)在图4中黄金矩形是_________.
【答案】 菱形 矩形,矩形
【解析】
(1)勾股定理可求得AB的长;
(2)易知BQ∥AD,再证AB∥QD证四边形BADQ是平行四边形;最后在证BA=AD得菱形;
(3)寻找边长为和2的矩形,即矩形BCDE是黄金矩;还可以寻找和2的矩形,使为分母,分母有理化后也可得到,即矩形MNDE
(1)∵MN=2,∴AC=1,BC=2
∴在Rt△BAC中,根据勾股定理,AB=
(2)∵四边形MNCB是正方形,∴BQ∥AD
∵折出内侧矩形的对角线,并把折到图3中所示的处
∴∠BAQ=∠QAD,∠BQA=∠AQD,AB=AD
∵BQ∥AD,∴∠BQA=∠QAD,∴∠BAQ=∠AQD
∴AB∥QD,∴四边形BADQ是平行四边形
∵AB=AD,∴平行四边形BADQ是菱形
(3)∵四边形BADQ是菱形,∴AD=AB=
∵AN=AC=1,∴CD=
∵BC=2,∴,∴矩形BCDE是黄金矩形
∵,∴矩形MNDE是黄金矩形
科目:初中数学 来源: 题型:
【题目】某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:
原进价(元/张) | 零售价(元/张) | 成套售价(元/套) | |
餐桌 | a | 270 | 500元 |
餐椅 | a﹣110 | 70 |
已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.
(1)求表中a的值;
(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?
(3)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,但销售价格保持不变.商场购进了餐桌和餐椅共200张,应怎样安排成套销售的销售量(至少10套以上),使得实际全部售出后,最大利润与(2)中相同?请求出进货方案和销售方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】受国内外复杂多变的经济环境影响,去年1至7月,原材料价格一路攀升,长沙市某服装厂每件衣服原材料的成本y1(元)与月份x(1≤x≤7,且x为整数)之间的函数关系如下表:
月份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
成本(元/件) | 56 | 58 | 60 | 62 | 64 | 66 | 68 |
8至12月,随着经济环境的好转,原材料价格的涨势趋缓,每件原材料成本y2(元)与月份x的函数关系式为y2=x+62(8≤x≤12,且x为整数).
(1)请观察表格中的数据,用学过的函数相关知识求y1与x的函数关系式.
(2)若去年该衣服每件的出厂价为100元,生产每件衣服的其他成本为8元,该衣服在1至7月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤7,且x为整数); 8至12月的销售量p2(万件)与月份x满足关系式p2=﹣0.1x+3(8≤x≤12,且x为整数),该厂去年哪个月利润最大;并求出最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AD>AB,连接AC,将线段AC绕点A顺时针旋转90得到线段AE,平移线段AE得到线段DF(点A与点D对应,点E与点F对应),连接BF,分别交直线AD,AC于点G,M,连接EF.
(1) 依题意补全图形;
(2) 求证:EG⊥AD;
(3) 连接EC,交BF于点N,若AB=2,BC=4,设MB=a,NF=b,试比较与之间的大小关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】菱形中,为边上的点,相交于点.
(1)如图1,若,,求证:;
(2)如图2,若.求证:;
(3)如图3,在(1)的条件下,平移线段到,使为的中点,连接交于点,若,请直接写出的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点在反比例函数的图象上,过点作轴,垂足为,直线经过点,与轴交于点,且,.
(1)求反比例函数和一次函数的表达式;
(2)直接写出关于的不等式的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设等边三角形的内切圆半径为外接圆半径为,平面内任意一点到等边三角形中心的距离为若满足则称点叫做等边三角形的中心关联点.在平面直角坐标系中,等边的三个顶点的坐标分别为.
(1)①等边中心的坐标为 ;
②已知点在中,是等边的中心关联点的是 ;
(2)如图1,过点作直线交轴正半轴于使.
①若线段上存在等边的中心关联点求的取值范围;
②将直线向下平移得到直线当满足什么条件时,直线上总存在等边的中心关联点;
(3)如图2,点为直线上一动点,的半径为当从点出发,以每秒个单位的速度向右移动,运动时间为秒.是否存在某一时刻使得上所有点都是等边的中心关联点?如果存在,请直接写出所有符合题意的的值;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度,如图,老师测得升旗台前斜坡FC的坡比为iFC=1:10(即EF:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角为α,已知tanα=,升旗台高AF=1m,小明身高CD=1.6m,请帮小明计算出旗杆AB的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 是直线上的两点,直线l1、l2的初始位置与直线重合将l1绕点顺时针以每秒10°的速度旋转,将l2绕点B逆时针以每秒5°的速度旋转,且两条直线从重合位置同时开始旋转,设旋转时间为秒(是正整数).当时,设的交点为;当时,设的交点为;当时设的交点为……那么当时, 相交所得的钝角是__________.当落在上方时, 的最小值是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com