【题目】现有一个种植总面积为的矩形塑料温棚,分垄间隔套种草莓和西红柿共垄,种植的草莓或西红柿单种农作物的总垄数不低于8垄,又不超过垄(垄数为正整数),它们的占地面积、产量、利润分别如下:
⑴若设草莓共种植了垄,通过计算说明共有几种种植方案?分别是哪几种?
⑵在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少?
占地面积(m2/垄) | 产量(千克/垄) | 利润(元/千克) | |
西红柿 | 32 | 160 | 1.0 |
草莓 | 15 | 50 | 1.6 |
【答案】(1)共有三种种植方案,具体方案见解析;(2)当草莓种植14垄,西红柿种植10垄,获得的利润最大,最大利润是2720元.
【解析】
(1)由于种植草莓或西红柿垄数是不确定的,所以应利用不等式来解答.由于塑料温棚的种植面积为530m2,所以可以列出不等式15x+32(24-x)≤530,由此可以先求得x的取值范围,然后再确定整数x的值,从而确定种植的方案;
(2)根据(2)中的方案分别求出每种方案获得的利润进行比较即可得.
(1)草莓共种植了垄,根据题意西红柿种了()垄,则有
15x+32(24-x)≤530,
解得x≥14,
∵x≤16,且x是正整数,
∴x=14,15,16
共有三种种植方案,分别是:
方案一:草莓种植14垄,西红柿种植10垄;
方案二:草莓种植15垄,西红柿种植9垄;
方案三:草莓种植16垄,西红柿种植8垄;
(2)方案一获得的利润:14×50×1.6+10×160×1.0=2720(元),
方案二获得的利润:15×50×1.6+9×160×1.0=2640(元),
方案三获得的利润:16×50×1.6+8×160×1.0=2560(元),
所以当草莓种植14垄,西红柿种植10垄,获得的利润最大,最大利润是2720元.
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:中,,求证:,下面写出可运用反证法证明这个命题的四个步骤:
①∴,这与三角形内角和为矛盾,②因此假设不成立.∴,③假设在中,,④由,得,即.这四个步骤正确的顺序应是( )
A.③④②①B.③④①②C.①②③④D.④③①②
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣+bx+c过点A(3,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.
(1)求直线AB的解析式和抛物线的解析式;
(2)如果点P是MN的中点,那么求此时点N的坐标;
(3)在对称轴的左侧是否存在点M使四边形OMPB的面积最大,如果存在求点M的坐标;不存在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种规律下去,第n次移动到点An,如果点An,与原点的距离不少于20,那么n的最小值是( )
A. 11B. 12C. 13D. 20
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ACB和△ECD均为等腰直角三角形,∠ACB=∠ECD=90°.
(1)如图1,点E在BC上,则线段AE和BD有怎样的关系?请直接写出结论(不需证明);
(2)若将△DCE绕点C旋转一定的角度得图2,则(1)中的结论是否仍然成立?请说明理由;
(3)当△DCE旋转到使∠ADC=90°时,若AC=5,CD=3,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的顶点为C,对称轴为直线,且经过点A(3,-1),与y轴交于点B.
(1)求抛物线的解析式;
(2)判断△ABC的形状,并说明理由;
(3)经过点A的直线交抛物线于点P,交x轴于点Q,若,试求出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+b与双曲线y=(k是常数,k≠0)在第一象限内交于点A(1,2),且与x轴、y轴分别交于B,C两点.点P在x轴.
(1)求直线和双曲线的解析式;
(2)若△BCP的面积等于2,求P点的坐标;
(3)求PA+PC的最短距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】嘉淇准备完成题目:化简:,发现系数“”印刷不清楚.
(1)他把“”猜成3,请你化简:(3x2+6x+8)–(6x+5x2+2);
(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com