精英家教网 > 初中数学 > 题目详情
如图,点D、E分别在△ABC的边AB、AC上,AD=4,BD=5,DE∥BC,∠ACD=∠B.
(1)求边AC的长;
(2)若S△ADE=2,求S△BCD的面积.
考点:相似三角形的判定与性质
专题:
分析:(1)因为DE∥BC,所以△ADE∽△ABC,利用相似三角形的性质:对应边的比值相等即可求出AC的长;
(2)由(1)可知△ADE∽△ABC,所以可得到△ABC的面积,利用高相等的三角形面积之比等于底之比可求出△DEC的面积,进而可求出S△BCD
解答:解:(1)∵DE∥BC,
∴△ADE∽△ABC,
∴AD:AB=AE:AC,
∵AD=4,BD=5,
∴AE:AC=4:9,
∵DE∥BC,
∴∠B=∠ADE,
∵∠ACD=∠B.
∴∠ADE=∠ACD,
∵∠A=∠A,
∴△ADE∽△ACD,
∴AD:AC=AE:AD,
∴AD2=AC•AE,
即16=
4
9
AC2
∴AC=6,
(2)∵△ADE∽△ABC,S△ADE=2,
∴S△ABC=
81
8

∵AE:CE=4:5,S△ADE=2,
∴S△DEC=
5
2

∴S△BCD=
81
8
-
5
2
=
61
8
点评:本题考查了相似三角形的判定和性质以及平行线的性质,熟悉相似三角形的性质:相似三角形的面积比是相似比的平方是解题关键,题目的综合性较强,难度不小.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

若分式方程
a
x-3
=2-
3
3-x
无解,则a的值(  )
A、3B、-3C、2D、0

查看答案和解析>>

科目:初中数学 来源: 题型:

下列说法错误的是(  )
A、0是整数
B、-0.7是负分数
C、10是正数
D、一个有理数不是正数就是负数

查看答案和解析>>

科目:初中数学 来源: 题型:

如果节约30m3水记作+30m3,那么浪费10m3水记作
 

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:{1+[(-
1
2
-2]-2}-2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,△ABC中,中线BD、CE相交于O,F、G分别为OB、OC的中点.判断四边形DEFG的形状并进行证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,E、F?ABCD对角线AC上的两点,且BE∥DF.
求证:
(1)△ABE≌△CDF;
(2)四边形BFDE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一个正方体的体积为125cm3,求此正方体的表面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

若x1、x2是方程x2-3x-2=0的两个实数根,则(x1-1)(x2-1)的值为
 

查看答案和解析>>

同步练习册答案