精英家教网 > 初中数学 > 题目详情
如图,在边长为4的正方形内部,以各边为直径画四个半圆,则图中阴影部分的面积是(  )
A、4B、4πC、2π-4D、2π
考点:扇形面积的计算
专题:
分析:作正方形的对角线,由图可知阴影部分的面积等于正方形面积的
1
4
,由此可得出结论.
解答:解:如图所示,
S阴影=S△AOB=
1
4
S正方形=
1
4
×4×4=4.
故选A.
点评:本题考查的是扇形面积的计算,根据题意作出辅助线是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

用一些相同的小立方体搭一个几何体,它的主视图和俯视图如图所示,俯视图中小正方形中字母表示在该位置的小立方块的个数,请解答下列问题:
(1)a、b、c各表示几?
(2)这个几何体最少由几个小立方体搭成?最多呢?
(3)当d=e=1,f=2时,画出这个几何体的左视图.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线y=kx-2与x轴交于点B,直线y=
1
2
x+1与y轴交于点C,这两条直线交于点A(2,a).
(1)直接写出a的值;
(2)求点B,C的坐标及直线AB的表达式;
(3)求四边形ABOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

等腰三角形的性质定理:等腰三角形的两个底角相等.
简单叙述为:等边对等角.(你能证明这个定理吗?你有几种方法?与同伴交流).
已知:如图,在△ABC中,AB=AC.求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别是a,b,c,已知b=2
7
,且sinA=
3
4
,求a和cosA.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,AD为△ABC的中线,E为AD上一点,若∠DAC=∠B,CD=CE,求证:
(1)△ACE∽△BAD;
(2)CD2=AE•AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,圆O是Rt△ABC的外接圆,点O在AB上,BD⊥AB,点B是垂足,OD∥AC,连接CD.已知AB=5,AC=3,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

几何模型
条件:如图1,A、B是直线l同侧的两个定点.
问题:在直线l上确定一点P,使PA+PB的值最小.
方法:作点B关于直线l的对称点B’,连结AB’交l于点P,则PA+PB=AB’的值最小(不必证明).
直接应用
如图2,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为
 

变式练习
如图3,点A是半圆上(半径为1)的三等分点,B是(
AN
)的中点,P是直径MN上一动点,求PA+PB的最小值.
深化拓展
(1)如图4,在锐角△ABC中,AB=4
2
,∠BAC=45°,∠BAC的平分线交BC 于点D,M、N分别是AD和AB上的动点,求BM+MN的最小值.
(2)如图5,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.
(要求:保留作图痕迹,并简述作法.)

查看答案和解析>>

科目:初中数学 来源: 题型:

单位换算:57.27°=
 
°
 
 
″.

查看答案和解析>>

同步练习册答案