【题目】小明投掷一次骰子,向上一面的点数记为,再投掷一次骰子,向上一面的点数记为,这样就确定点的一个坐标,那么点落在双曲线上的概率为( )
A.B.C.D.
【答案】B
【解析】
列举出所有情况,看落在双曲线上的情况占总情况的多少即可.
解:列表如下:
1 | 2 | 3 | 4 | 5 | 6 | |
1 | (1,1) | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) |
2 | (2,1) | (2,2) | (2,3) | (2,4) | (2,5) | (2,6) |
3 | (3,1) | (3,2) | (3,3) | (3,4) | (3,5) | (3,6) |
4 | (4,1) | (4,2) | (4,3) | (4,4) | (4, | (4,6) |
5 | (5,1) | (5,2) | (5,3) | (5,4) | (5,5) | (5,6) |
6 | (6,1) | (6,2) | (6,3) | (6,4) | (6,5) | (6,6) |
由表可知共有36种情况,落在双曲线上的情况有(1,6)、(2,3)、(3,2)、(6,1)4种情况,所以点(x,y)落在双曲线上的概率为,
故选:B.
科目:初中数学 来源: 题型:
【题目】如图所示,平面直角坐标系中,直线y=﹣x+3交坐标轴与B、C两点,抛物线y=ax2+bx+3经过B、C两点,且交x轴于另一点A(﹣1,0).点D为抛物线在第一象限内的一点,过点D作DQ∥CO,DQ交BC于点P,交x轴于点Q.
(1)求抛物线解析式;
(2)设点P的横坐标为m,在点D的移动过程中,存在∠DCP=∠ACO,求出m值;
(3)在抛物线取点E,在坐标系内取点F,问是否存在以C、B、E、F为顶点且以CB为边的矩形?如果有请求出点E的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.
(1)求证:直线PA为⊙O的切线;
(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;
(3)若BC=6,tan∠F=,求cos∠ACB的值和线段PE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请仅用无刻度直尺完成下列画图,不写画法,保留画图痕迹.
(1)如图1,在的正方形网格中,每个小正方形的边长为1,小正方形的顶点叫做格点.的顶点在格点上,过点画一条直线平分的面积;
(2)如图2,点在正方形的内部,且,过点画一条射线平分;
(3)如图3,点、、均在上,且,在优弧上画、两点,使.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线的顶点,经过点,与轴分别交于,两点.
(1)求该抛物线的解析式;
(2)如图1,点是抛物线上的一个动点,且在直线的下方,过点作轴的平行线与直线交于点,当取最大值时,求点的坐标;
(3)如图2,轴交轴于点,点是抛物线上,之间的一个动点,直线,与分别交于,,当点运动时.
①直接写出的值;
②直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,BC⊥x轴,垂足为D,边AB所在直线分别交x轴、y轴于点E、F,且AF=EF,反比例函数y=的图象经过A、C两点,已知点A(2,n).
(1)求AB所在直线对应的函数表达式;(2)求点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)观察猜想,如图①点B、A、C在同一条直线上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,则BC、BD、CE之间的数量关系为 ;
(2)问题解决,如图②,在Rt△ABC中,∠ABC=90°,CB=6,AB=3,以AC为直角边向外作等腰Rt△DAC,连结BD,求BD的长;
(3)拓展延伸,如图③,在四边形ABCD中,∠ABC=∠ADC=90°,CB=6,AB=3,DC=DA,请直接写出BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了保证端午龙舟赛在我市汉江水域顺利举办,某部门工作人员乘快艇到汉江水域考察水情,以每秒10米的速度沿平行于岸边的赛道AB由西向东行驶.在A处测得岸边一建筑物P在北偏东30°方向上,继续行驶40秒到达B处时,测得建筑物P在北偏西60°方向上,如图所示,求建筑物P到赛道AB的距离(结果保留根号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com